
Latin Squares Instructor: Paddy

Lecture 2: Evans’ Conjecture

Week 1 of 1 Mathcamp 2010

Our goal in the next two lectures will be to prove the following result, which (until its proof)
was known as Evans’ Conjecture:

Theorem 1 (Smetianuk, 1981) Any n× n partial latin square with ≤ n− 1 entries can be
completed to a latin square.

This theorem breaks into two cases, each of which takes about a lecture; specifically, we
can consider separately the cases where there are ≤ n/2-distinct symbols amongst our n−1
completed entries, or the case where there are more than n/2-distinct symbols amongst our
entries. Today, we will prove the first case:

Theorem 2 Any n × n partial latin square P with ≤ n − 1 entries and ≤ n/2 distinct
symbols in P can be completed to a latin square.

Proof. As described in our earlier lecture, for any such partial latin square P we can
exchange the rows and symbols of P to get a partial latin square with ≤ n − 1 entries in
which at most n/2 rows are nonempty. By then permuting the rows of P , we can insure
that all of our entries lie in the first r rows of P , for r ≤ n/2. Furthermore, if fi = the
number of completed elements in row i, we can use more row-permutations to force

f1 ≥ f2 ≥ . . . fr.

We now claim that we can complete this to a r × n latin rectangle, expanding this one
row at a time. How can we do this?

Well: just like before, we’re motivated to try to use Hall’s marriage theorem, which says

Theorem 3 Suppose that G = (A,B) is a bipartite graph that satisfies Hall’s property:

(‡) : ∀H ⊂ A or H ⊂ B, |N(H)| ≥ |H|.

Then G has a 1-factor.

Specifically, we’d like to use the following alternate form of Hall’s marriage theorem,
which (HW) you’re encouraged to prove if you haven’t yet seen it:

Theorem 4 Suppose that G = (A,B) is a bipartite graph that satisfies

(?) : ∀H ⊂ A, |N(H)| ≥ |H|, and |A| = |B|.

Then G has a 1-factor.

So: suppose that we’ve filled in all of the rows 1, . . . l − 1 in P . Consider the following
bipartite graph (A,B):
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• Ai = the collection of all elements not used thus far in column i,

• X = the collection of all elements {1, . . . n} that aren’t already used in row l.

• A = the collection of all of the Ai, where i is a column that doesn’t contain an already
filled-in entry of the l-th row.

If we can find a 1-factor between the Ai’s and X, we can use this to fill in all of the
remaining entries in the l-th row, in a way that preserves our latin-square properties! Thus,
we merely need to do this first for l = 1, and then repeatedly increment l; this will eventually
complete our partial latin square P to a r × n latin rectangle, which we can then complete
by our results yesterday! Thus, it suffices to find such a 1-factor.

We first note the following useful lemma:

Lemma 5

n− fl − l + 1 > l − 1 + (fl+1 + . . . + fr).

Proof. For l = 1, this is just

n− f1 > +(f2 + . . . + fr)

⇔n > (f1 + f2 + . . . + fr),

which we know to be true by assumption.
For l > 1: we have

n− f1 > +(f2 + . . . + fr)

⇒n >
n∑

i=1

fi ≥ (l − 1)fl−1 + fl + . . . fr,

because f1 + . . . fl−1 ≥ fl−1 + . . . fl−1 = (l − 1)fl−1.
There are then two possibilities: either

• fl−1 ≥ 2, in which case we have

n > (l − 1)fl−1 + fl + . . . fr

⇒n > (l − 1)2 + fl + . . . fr

⇒n− fl − l + 1 > fl+1 + . . . fr.

• fl−1 = 1. In this case, we have that fk is forced to be ≤ 1, for every k ≥ l − 1;
consequently, we’re just trying to show that

n− 1− l + 1 > l − 1 + (r − l)

⇔n > r + l − 1.

Because l ≤ r ≤ n/2, this holds as well! So our lemma is proven.
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Returning to our proof: by Hall’s marriage theorem it suffices to show that for any
collection Aji , . . . Ajm , we have∣∣∣∣∣N

(
m⋃
i=1

Aji

)∣∣∣∣∣ =

∣∣∣∣∣
m⋃
i=1

Aji

∣∣∣∣∣ ≥ m.

For ease of notation, denote
⋃m

i=1Aji by B.
How can we do this? Well: let c denote the number of cells in the columns j1 . . . jm that

lie in X. Then, there are ≤ (l− 1) ·m cells in X used in all of the rows above the l-th row
(as we’re assuming that they’re all full, and there are m columns and l − 1 rows.) As well,
there are ≤ fl+1 + . . . fr-many cells in X used in the rows below l, as those are the only
filled cells below the l-th row: so we have that

c ≤ (l − 1)m + fl+1 + . . . + fr.

Conversely: pick any x ∈ X that doesn’t lie in B; then, by definition, it must show up
in every single column ji, i = 1 . . .m, somewhere. Because there are m different columns,
we then have that each such x shows up in c m different times: thus, we have that

m(|X| − |B|) ≤ c.

Combining, we have that

m(|X| − |B|) ≤ (l − 1)m + fl+1 + . . . + fr

⇒|B| ≥ mn−mfl − (l − 1)m− (fl+1 + . . . fr)

m

We’re trying to show that |B| > m− 1; so, it’d definitely suffice to show that

mn−mfl − (l − 1)m− (fl+1 + . . . fr)

m
> m− 1

⇒m(n− fl − l + 2−m) > fl+1 + . . . + fr.

So: consider various cases. If m = 1 or m = n − fl − l + 1, this is just our lemma.
Consequently, we have that this holds for every value in between, as the LHS of the above
equation is a quadratic polynomial in m with m2’s coefficient = −1.

It then suffices to consider m > n− fl − l + 1.
So: pick any x ∈ X. We know that x is in ≤ l−1+fl+1+ . . . fr rows in P : ergo, it is also

in ≤ l−1+fl+1+. . . fr many columns. So, if we have ≥ n−fl−l+1 > l−1+fl+1+. . . fr-many
Aj ’s, there’s always an Aj that contains x! So |B| = |X| ≥ m.

Thus, our graph satisfies Hall’s property; so we have a 1-factor, and thus we can complete
this row! Repeating this process yields a latin rectangle, which we can then complete to a
latin square.
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