Latin Squares		Instructor: Paddy
	Lecture 2: Evans' Conjecture	
Week 1 of 1		Mathcamp 2010

Our goal in the next two lectures will be to prove the following result, which (until its proof) was known as Evans' Conjecture:

Theorem 1 (Smetianuk, 1981) Any $n \times n$ partial latin square with $\leq n-1$ entries can be completed to a latin square.

This theorem breaks into two cases, each of which takes about a lecture; specifically, we can consider separately the cases where there are $\leq n / 2$-distinct symbols amongst our $n-1$ completed entries, or the case where there are more than $n / 2$-distinct symbols amongst our entries. Today, we will prove the first case:

Theorem 2 Any $n \times n$ partial latin square P with $\leq n-1$ entries and $\leq n / 2$ distinct symbols in P can be completed to a latin square.

Proof. As described in our earlier lecture, for any such partial latin square P we can exchange the rows and symbols of P to get a partial latin square with $\leq n-1$ entries in which at most $n / 2$ rows are nonempty. By then permuting the rows of P, we can insure that all of our entries lie in the first r rows of P, for $r \leq n / 2$. Furthermore, if $f_{i}=$ the number of completed elements in row i, we can use more row-permutations to force

$$
f_{1} \geq f_{2} \geq \ldots f_{r}
$$

We now claim that we can complete this to a $r \times n$ latin rectangle, expanding this one row at a time. How can we do this?

Well: just like before, we're motivated to try to use Hall's marriage theorem, which says

Theorem 3 Suppose that $G=(A, B)$ is a bipartite graph that satisfies Hall's property:

$$
(\ddagger): \quad \forall H \subset A \text { or } H \subset B,|N(H)| \geq|H| .
$$

Then G has a 1-factor.
Specifically, we'd like to use the following alternate form of Hall's marriage theorem, which (HW) you're encouraged to prove if you haven't yet seen it:

Theorem 4 Suppose that $G=(A, B)$ is a bipartite graph that satisfies

$$
(\star): \quad \forall H \subset A,|N(H)| \geq|H|, \text { and }|A|=|B| .
$$

Then G has a 1-factor.
So: suppose that we've filled in all of the rows $1, \ldots l-1$ in P. Consider the following bipartite graph (A, B) :

- $A_{i}=$ the collection of all elements not used thus far in column i,
- $X=$ the collection of all elements $\{1, \ldots n\}$ that aren't already used in row l.
- $A=$ the collection of all of the A_{i}, where i is a column that doesn't contain an already filled-in entry of the l-th row.

If we can find a 1 -factor between the A_{i} 's and X, we can use this to fill in all of the remaining entries in the l-th row, in a way that preserves our latin-square properties! Thus, we merely need to do this first for $l=1$, and then repeatedly increment l; this will eventually complete our partial latin square P to a $r \times n$ latin rectangle, which we can then complete by our results yesterday! Thus, it suffices to find such a 1 -factor.

We first note the following useful lemma:

Lemma 5

$$
n-f_{l}-l+1>l-1+\left(f_{l+1}+\ldots+f_{r}\right)
$$

Proof. For $l=1$, this is just

$$
\begin{aligned}
& n-f_{1}>+\left(f_{2}+\ldots+f_{r}\right) \\
\Leftrightarrow & n>\left(f_{1}+f_{2}+\ldots+f_{r}\right),
\end{aligned}
$$

which we know to be true by assumption.
For $l>1$: we have

$$
\begin{aligned}
& n-f_{1}>+\left(f_{2}+\ldots+f_{r}\right) \\
\Rightarrow & n>\sum_{i=1}^{n} f_{i} \geq(l-1) f_{l-1}+f_{l}+\ldots f_{r},
\end{aligned}
$$

because $f_{1}+\ldots f_{l-1} \geq f_{l-1}+\ldots f_{l-1}=(l-1) f_{l-1}$.
There are then two possibilities: either

- $f_{l-1} \geq 2$, in which case we have

$$
\begin{aligned}
& n>(l-1) f_{l-1}+f_{l}+\ldots f_{r} \\
\Rightarrow & n>(l-1) 2+f_{l}+\ldots f_{r} \\
\Rightarrow & n-f_{l}-l+1>f_{l+1}+\ldots f_{r} .
\end{aligned}
$$

- $f_{l-1}=1$. In this case, we have that f_{k} is forced to be ≤ 1, for every $k \geq l-1$; consequently, we're just trying to show that

$$
\begin{aligned}
& n-1-l+1>l-1+(r-l) \\
\Leftrightarrow & n>r+l-1 .
\end{aligned}
$$

Because $l \leq r \leq n / 2$, this holds as well! So our lemma is proven.

Returning to our proof: by Hall's marriage theorem it suffices to show that for any collection $A_{j_{i}}, \ldots A_{j_{m}}$, we have

$$
\left|N\left(\bigcup_{i=1}^{m} A_{j_{i}}\right)\right|=\left|\bigcup_{i=1}^{m} A_{j_{i}}\right| \geq m .
$$

For ease of notation, denote $\bigcup_{i=1}^{m} A_{j_{i}}$ by B.
How can we do this? Well: let c denote the number of cells in the columns $j_{1} \ldots j_{m}$ that lie in X. Then, there are $\leq(l-1) \cdot m$ cells in X used in all of the rows above the l-th row (as we're assuming that they're all full, and there are m columns and $l-1$ rows.) As well, there are $\leq f_{l+1}+\ldots f_{r}$-many cells in X used in the rows below l, as those are the only filled cells below the l-th row: so we have that

$$
c \leq(l-1) m+f_{l+1}+\ldots+f_{r} .
$$

Conversely: pick any $x \in X$ that doesn't lie in B; then, by definition, it must show up in every single column $j_{i}, i=1 \ldots m$, somewhere. Because there are m different columns, we then have that each such x shows up in $c m$ different times: thus, we have that

$$
m(|X|-|B|) \leq c .
$$

Combining, we have that

$$
\begin{aligned}
& m(|X|-|B|) \leq(l-1) m+f_{l+1}+\ldots+f_{r} \\
\Rightarrow & |B| \geq \frac{m n-m f_{l}-(l-1) m-\left(f_{l+1}+\ldots f_{r}\right)}{m}
\end{aligned}
$$

We're trying to show that $|B|>m-1$; so, it'd definitely suffice to show that

$$
\begin{aligned}
& \frac{m n-m f_{l}-(l-1) m-\left(f_{l+1}+\ldots f_{r}\right)}{m}>m-1 \\
\Rightarrow & m\left(n-f_{l}-l+2-m\right)>f_{l+1}+\ldots+f_{r} .
\end{aligned}
$$

So: consider various cases. If $m=1$ or $m=n-f_{l}-l+1$, this is just our lemma. Consequently, we have that this holds for every value in between, as the LHS of the above equation is a quadratic polynomial in m with m^{2} 's coefficient $=-1$.

It then suffices to consider $m>n-f_{l}-l+1$.
So: pick any $x \in X$. We know that x is in $\leq l-1+f_{l+1}+\ldots f_{r}$ rows in P : ergo, it is also in $\leq l-1+f_{l+1}+\ldots f_{r}$ many columns. So, if we have $\geq n-f_{l}-l+1>l-1+f_{l+1}+\ldots f_{r}$-many A_{j} 's, there's always an A_{j} that contains x ! So $|B|=|X| \geq m$.

Thus, our graph satisfies Hall's property; so we have a 1 -factor, and thus we can complete this row! Repeating this process yields a latin rectangle, which we can then complete to a latin square.

