| Latin Squares |  | Instructor: Paddy |
| :--- | :--- | ---: |
|  | Homework 1: Latin Squares! |  |
| Week 4 |  | Mathcamp 2010 |

1. Prove the following lemma:

Lemma 1 If $P$ is a partial latin square with $\leq n-1$ entries and $>n / 2$ distinct symbols used in those entries, we can find an equivalent latin square $P^{\prime}$ with the following properties:

- There is exactly one cell with symbol $n$; the rest all have symbols $\leq n-1$.
- This n-symbol lies on the main diagonal of our matrix: the rest lie strictly beneath the main diagonal.


2. Find 4 mutually orthogonal $5 \times 5$ latin squares; in general, show how we can find $n-1$ mutually orthogonal $n \times n$ latin squares, whenever $n$ is a prime.
3. Find a $4 \times 4$ latin square that has no orthogonal mate.
4. In the second problem set, we showed that a $n \times n$ latin square $L$ is equivalent to a 1-factorization of $K_{n, n}$. Show that a latin square $L$ has an orthogonal mate if there is a coloring of $L$ 's associated 1-factorization in which each 1-factor contains an edge of every color.
5. (For those people who attended Yuval's talk) Find a quandle whose multiplication table is a latin square.
