Latin Squares

Instructor: Paddy

Homework 1: Latin Squares!

Week 4

Mathcamp 2010

1. Prove the following lemma:

Lemma 1 If P is a partial latin square with $\leq n - 1$ entries and > n/2 distinct symbols used in those entries, we can find an equivalent latin square P' with the following properties:

- There is exactly one cell with symbol n; the rest all have symbols $\leq n-1$.
- This n-symbol lies on the main diagonal of our matrix: the rest lie strictly beneath the main diagonal.

- 2. Find 4 mutually orthogonal 5×5 latin squares; in general, show how we can find n-1 mutually orthogonal $n \times n$ latin squares, whenever n is a prime.
- 3. Find a 4×4 latin square that has no orthogonal mate.
- 4. In the second problem set, we showed that a $n \times n$ latin square L is equivalent to a 1-factorization of $K_{n,n}$. Show that a latin square L has an orthogonal mate if there is a coloring of L's associated 1-factorization in which each 1-factor contains an edge of every color.
- 5. (For those people who attended Yuval's talk) Find a quandle whose multiplication table is a latin square.