Latin Squares	Instructor: Paddy
	Homework 2: Applications of Latin Squares
Week 4	Mathcamp 2010

$N I \cap 6 N \exists d N M O P-\exists P I S d \cap$

1. Using Hall's marriage theorem, deduce the following alternate form for it:

Theorem 1 Suppose that $G=(A, B)$ is a bipartite graph that satisfies

$$
(\star): \quad \forall H \subset A,|N(H)| \geq|H|, \text { and }|A|=|B| .
$$

Then G has a 1-factor.
2. A diagonal latin square is a latin square in which both of the diagonals don't contain any repeated elements. Show that for n odd and not a multiple of 3 , that there are diagonal $n \times n$ latin squares.
3. Show, furthermore, that there are a pair of mutually orthogonal diagonal latin squares of order n, if n is odd and not a multiple of 3 .
4. A magic square is a $n \times n$ grid consisting of the integers $\left\{0, \ldots n^{2}-1\right\}$ such that the sum of any row, column, or diagonal is always the same value. Use the above result to prove that a $n \times n$ magic square exists whenever n is odd and not a multiple of 3 .
5. Use the algorithm developed in class to complete the following partial latin square:
$\left[\begin{array}{llllllllll}1 & & & & & & & & & \\ & 1 & & & & & & & & \\ & & 2 & & & & & & & \\ & & & 2 & & & & & & \\ & & & & 3 & & & & & \\ & & & & & 3 & & & & \\ & & & & & & 4 & & & \\ & & & & & & & 4 & & \\ & & & & & & & & & \\ & & & & & & & & 5 & \\ & & & & & & & & & 5\end{array}\right]$

