Latin Squares		Instructor: Paddy
	Homework 1: Latin Squares!	
Week 4		Mathcamp 2010

1. Let $L(n)$ denote the number of $n \times n$ latin squares, and $l(n)$ denote the number of $n \times n$ latin squares where the first row and column are both of the form $[1, \ldots n]$. Prove the following formula:

$$
L(n)=(n)!(n-1)!l(n) .
$$

2. How many non-equivalent latin squares of order 4 are there?
3. If you haven't yet, prove Hall's marriage theorem: i.e.

Theorem 1 Suppose that $G=(A, B)$ is a bipartite graph that satisfies Hall's property:

$$
(\ddagger): \quad \forall H \subset A \text { or } H \subset B,|N(H)| \geq|H| .
$$

Then G has a 1-factor.
4. Prove the following lemma from class:

Lemma 2 If A is a $n \times n$ integral matrix, then for any d there are matrices $B_{1}, \ldots B_{d}$ such that

$$
A=B_{1}+\ldots+B_{d},
$$

where the matrices B_{i} are all integral $n \times n$ matrices that have the same entries, row and column sums, and sum over all entries as $\frac{1}{d} A$, up to rounding up or down.
5. Show that a $n \times n$ latin square is equivalent to a 1 -factorization of $K_{n, n}$.
6. Show that a $n \times n$ latin square is equivalent to a triangulation of $K_{n, n, n}$.
7. Show that the multiplication table of any group G on n elements forms a latin square. Are there latin squares that don't arise in this way?

