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Consider the following property:

Definition. Let (‡) denote the following property of graphs: we say that a graph G satisfies
the property (‡) iff for any pair of finite disjoint subsets U,W ⊂ V (G), there is some
v ∈ V (G), v /∈ U ∪W , such that v has an edge to every vertex in U and to no vertices in
W .

Is there a graph on infinitely many vertices that satisfies this property?

So: one natural question we could ask about our property (‡), then, is the following: if
we take a random graph on ℵ0-many vertices, what is the likelihood that we would get a
graph that satisfies (‡)?

To answer this question, let’s first define just what we mean by a random graph on ℵ0:

Definition. Gℵ0,p is the random graph on the vertex set N formed by doing the following:
given a biased coin that comes up heads with probability p and tails with probability 1− p,
flip this coin for every pair of distinct natural numbers {x, y}. If it comes up heads, add
this edge to our graph; else, do not add this edge.

Given this definition, we have the following rather remarkable result:

Theorem 1 If G is a random graph of the form Gℵ0,p, for p 6= 0, 1, then G satisfies (‡)
with probability 1.

Proof. Choose any pair of finite disjoint subsets U,W in V (G). Then, for any vertex
v ∈ V (G), v /∈ U ∪W , let Av be the event that v is connected to all of U and none of W .
Then, we have that

Pr(Av) = p|U | · (1− p)|V | > 0.

Because the probability that Av doesn’t happen plus the probability that Av does happen
must sum to 1, we then know that

Pr(not Av) = 1− p|U | · (1− p)|V | = λ < 1,

for some constant λ ∈ (0, 1).
Thus, we know that the probability of k different vertices v1, . . . vk all failing to satisfy

Av is λk, which goes to 0 as k increases! So we can specifically bound this probability above
by ε, for any ε > 0, by simply looking at enough vertices.

Now, note that there are only countably many pairs of finite disjoint subsets of N; con-
sequently, we can enumerate all such pairs in a list {(Ui,Wi)}∞i=1, and bound the probability
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of (Ui,Wi) failing to have a vertex that hits all of Ui and none of Wi by ε/2i, for every i.
Then, the probability of any of these events failing is bounded above by the sum

∞∑
n=1

ε

2n
= ε;

so thie probability of our graph satisfying property (‡) is greater than 1− ε, for any ε > 0;
i.e. the probability of our graph satisfying this property is 1! So, almost every random
graph satisfies property (‡).

So: the probabilistic method is a fantastically useful way to show the existence of graphs
with certain properties! However, it’s not so great for actually providing concrete examples
of such graphs; typically, an application of probabilistic ideas will only tell you that most
graphs have your property, not what one such graph might actually look like.

In the light of the above comments, it’s interesting to note that we can actually construct
a graph that satisfies (‡)! In fact, consider the following construction:

0 1 2 3 4 5 6 7 8

• Start by defining R0 = K1, the graph with a single vertex.

• If Rk is defined, let Rk+1 be defined by the following: take Rk, and add a new vertex
vU for every possible subset U of Rk’s vertices. Now, add an edge from vU to every
element in U , and to no other vertices in Rk.

• Let R = ∪∞k=1Rk.

We claim that this is a graph on ℵ0-many vertices that satisfies property (‡). To see why:
pick any two finite disjoint subsets U, V of V (R). Because each vertex of R lives in some
Rk, we know that there is some value n such that U, V are both in fact subsets of Rn, as
there are only finitely many elements in U ∪ V . Then, by construction, we know that there
is a vertex vU in Rn+1 with an edge to every vertex in U and to none in V .

This graph is known as the Rado graph, and it has the following remarkable property:

Proposition 2 The Rado graph is the only graph on ℵ0-many vertices, up to isomorphism1,
that satisfies (‡).

1An isomorphism of two graphs G = (V,E), G′ = (V ′, E′) is a bijection φ : V → V ′ such that {u, v} is
an edge in V iff {φ(u), φ(v)} is an edge in V ′.
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Proof. To see this, take any two graphs G = (V,E), G′ = (V ′, E′) on ℵ0-many vertices
that satisfy (‡); we will exhibit an isomorphism φ”V → V ′ between them.

To do this: fix some ordering {vi}∞i=1 of V ’s vertices, and do the same for V ′. We start
with φ undefined for any values of V , and construct φ via the following back-and-forth
process:

• At odd steps:

– Let v be the first vertex under V ’s ordering that we haven’t defined φ on, and

– let U be the collection of all of v’s neighbors in V that we currently have defined
φ on.

– By (‡), we know that there is a v′ ∈ V ′ such that v′ is adjacent to all of the
vertices in φ(U) and no other yet-defined vertices in V ′ that φ hits yet (as both
sets are stil finite.)

• At even steps: do the exact same thing as above, except switch V and V ′.

So, in other words, we’re starting with φ totally undefined; at our first step, we’re then
just taking φ and saying that it maps v1 ∈ V to some element in V ′. Then, at our second
step, we’re taking the smallest element in V ′ that’s not φ(v1), and mapping it to some
element w that either does or does not share an edge with v, depending on whether φ(w)
and φ(v) share an edge.

By repeating this process, we eventually get a map that’s defined on all of V, V ′; we
claim that such a map is an isomorphism. It’s clearly a bijection, as it hits every vertex
exactly once by definition; so it suffices to prove that it preserves edges.

To see why this is true: take any edge {u, v} in V , and assume (WLOG) that φ was
defined on u before it defined on v. Then, when we defined φ(u), we did it in only one of
two ways:

• We defined φ(u) at an odd stage. In this case, when we defined φ(u), we defined φ(u)
so that it would be adjacent to all of u’s neighbors that we’ve already defined φ on –
i.e. v! So we know that {φ(u), φ(v)} is an edge.

• We defined φ(u) at an even stage. In this case, we again picked u so that, amongst the
already-mapped-to elements of V , it would be adjacent to only those elements w ∈ V
so that {φ(u), φ(v)} are adjacent! So, because {u, v} is an edge, so is {φ(u), φ(v)}.

As φ is a bijection, the above logic easily goes the other way: so {u, v} is an edge in E iff
{φ(u), φ(v)} is an edge in E′. Consequently, we have that φ is an isomorphism!

Finally, combining our results gives us the following rather surprising result:

Corollary 3 With probability 1, any two random graphs are isomorphic.

(... wait, what?)
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