
Probabilistic Methods in Graph Theory Instructor: Paddy

Lecture 2: High Girth and High Chromatic Number

Week 1 of 1 Mathcamp 2010

In this talk, we will develop Markov’s inequality, a remarkably useful tool, and show
how its application can give us (with relatively little effort, especially when compared to
constructive methods!) graphs of arbitrarily high girth and chromatic number.

Theorem 1 (Markov’s Inequality) For a random variable X and any positive constant a,
Pr(|X| > a) ≤ E(|X|)/a.

Solution. So: let I(|X|≥a) be the indicator random variable defined by

I(|X|≥a)(ω) =

{
1 |X(ω)| ≥ a,
0 otherwise.

Then, for any ω in Ω, we trivially have that a · I(|X|≥a)(ω) ≤ |X(ω)|; consequently, we
have

E(a · I(|X|≥a)) =
∑
ω∈Ω

a · I(|X|≥a)Pr(ω)

=
∑

ω∈Ω:|X(ω)|≥a

aPr(ω)

≤
∑

ω∈Ω:|X(ω)|≥a

|X(ω)|Pr(ω)

≤
∑
ω∈Ω

|X(ω)|Pr(ω)

= E(X).

However, on the other hand, we have

E(a · I(|X|≥a)) =
∑
ω∈Ω

a · I(|X|≥a)Pr(ω)

= a ·
∑

ω∈Ω:|X(ω)|≥a

Pr(ω)

= a · Pr(|X| ≥ a);

combining, we have Pr(|X| > a) ≤ E(|X|)/a.

So: with this theorem under our belt, we now have the tools to resolve the following
graph theory question (which otherwise is fairly hard to surmount:)

Theorem 2 There are graphs with arbitarily high girth and chromatic number.

Proof. So: let Gn,p denote a random graph on n vertices, formed by doing the following:
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• Start with n vertices.

• For every pair of vertices {x, y}, flip a biased coin that comes up heads with probability
p and tails with probability 1 − p. If the coin is heads, add the edge {x, y} to our
graph; if it’s tails, don’t.

Our roadmap, then, is the following:

• For large n and well-chosen p, we will show that Gn,p will have relatively “few” short
cycles at least half of the time.

• For large n, we can also show that G will have high chromatic number at least half
the time.

• Finally, by combining these two results and deleting some vertices from our graph,
we’ll get that graphs with both high chromatic number and no short cycles exist in
our graph.

To do the first: fix a number l, and let X be the random variable defined by X(Gn,p) =
the number of cycles of length ≤ l in Gn,p.

We then have that

X(Gn,p) ≤
l∑

j=3

∑
allj−tuplesx1...xj

Nx1...xj ,

where Nx1...xj is the event that the vertices x1 . . . xj form a cycle.
Then, we have that

E(X) ≤
l∑

j=3

∑
j−tuples x1...xj

Pr(Nx1...xj )

=

l∑
j=3

∑
j−tuples x1...xj

pj

=
l∑

j=3

njpj .
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To make our sum easier, let p = nλ−1, for some λ ∈ (0, 1/l); then, we have that

E(X) =

l∑
j=3

njpj

=

l∑
j=3

njnjλ−j

=

l∑
j=3

njλ

<
nλ(l+1)

nλ − 1

=
nλl

1− n−λ

We claim that this is smaller than n/c, for any c and sufficiently large n. To see this, simply
multiply through; this gives you that

nλl

1− n−λ
< n/c

⇔nλl < n/c− n1−λ/c

⇔nλl + n1−λ/c < n/c

,

which, because both λl and 1− λ are less than 1, we know holds for large n.
So: to recap: we’ve shown that

E(|X|) < n/4.

So: what happens if we apply Markov’s inequality? Well: we get that

Pr(|X| ≥ n/2) ≤ E(|X|)
n/2

<
n/4

n/2
= 1/2;

in other words, that more than half of the time we have relatively “few” short cycles! So
this is the first stage of our theorem.

Now: we seek to show that the chromatic number of our random graphs will be “large,”
on average. Doing this directly, by working with the chromatic number itself, would be
rather ponderous: as week two of our class showed, the chromatic number of a graph can
be a rather mysterious thing to calculate.

Rather, we will work with the independence number α(G) of our graph, the size
of the independent set of vertices1 in our graph. Why do we do this? Well, in a proper

1A set of vertices is called independent if their induced subgraph has no edges. in it
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k-coloring of a graph, each of the colors necessarily defines an independent set of vertices,
as there are no edges between vertices of the same color; ergo, we have that

χ(G) ≥ |V (G)|
α(G)

,

for any graph G.
So: to make the chromatic number large, it suffices to make α(G) small! So: look at

Pr(α(G) ≥ m), for some value m. We then have the following:

Pr(α(G) ≥ m) = Pr(there is a subset of G of size m with no edges in it)

≤
∑

S⊂V,|S|=m

Pr(there are no edges in S’s induced subgraph)

=

(
n

m

)
· (1− p)(

m
2 )

,

as there are
(
n
m

)
-many such subsets, and in order for there to be no edges in S’s subgraph

we need merely for all of the coin-flips that go into creating S to come up tails: i.e. this

happens (1− p)(
m
2 ) of the time.

So: note the following useful inequalities:

•
(
n
m

)
≤ nm. To see this, expand the binomial coefficient into the form n·...(n−m+1)

m! ,
discard the m!, and bound the m terms in the numerator by nm. It’s a awful bound,
but one that is really easy to work with!

• (1 − p) < e−p. There are a number of proofs of this, which can be regarded as a
simplified form of Bernoulli’s inequality; elementary calculus methods should suffice
to give this to you!

Applying both of these inequalities, we have that

Pr(α(G) ≥ m) < nm · e−p·(
m
2 )

= nm · e−p·m·(m−1)/2.

So: motivated by a desire to make the above simple, let m =
⌈

3
p ln(n)

⌉
. This then gives

us that

Pr(α(G) ≥ m) < nm · e−p·
⌈
3
p

ln(n)
⌉
·(m−1)/2

= nm · n−3(m−1)/2,

which goes to 0 as n gets large. So, in particular, we know that for large values of n and
any m, we have

Pr(α(G) ≥ m) < 1/2.
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So: let’s combine our results! In other words, we’ve successfully shown that for large n,

Pr(G has more than (n/2)-many cycles of length ≤ l, orα(G) ≥ m) < 1.

So: for large n, there is a graph G so that neither of these things happen! Let G be such
a graph. G has less than n/2-many cycles of length ≤ l; so, from each such cycle, delete a
vertex. Call the resulting graph G′.

Then, we have the following:

• By construction, G′ has girth ≥ l.

• Also by construction, G′ has at least n/2 many vertices, as it started with n and we
deleted ≤ n/2.

• Deleting vertices doesn’t decrease the independence number of a graph! (If you’re not
sure why this is, look at the definition and work it out!) Thus, we have that

χ(G′) ≥ |V (G′)|
α(G′)

≥ n/2

α(G)

≥ n/2

3 ln(n)/p

=
n/2

3n1−λ ln(n)

=
nλ

6 ln(n)
,

which goes to infinity as n grows large.

So, for large n, this graph has arbitrarily large girth and chromatic number!
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