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1 Glossary

Ramsey number The Ramsey number R(k, l) is the smallest number n such that any
red-blue two-coloring of Kn’s edges will always create a red Kk or a blue Kl.

Finite sample space A finite sample space is just some finite set Ω.

Probability function Given a finite sample space Ω, a probability function Pr on Ω is
just a map Pr : Ω→ [0, 1] with the property that∑

ωinΩ

Pr(ω) = 1.

Finite probability space A pair (Ω, P r), where Ω is a finite sample space and Pr is a
probability function.

Uniform distribution A pair (Ω, P r), where Ω is a finite sample space and Pr is the
probability function given by Pr(ω) = 1/|Ω|, for every ω ∈ Ω.

Event An event A is just some subset of a finite sample space.

Random variable A random variable X on some finite sample space Ω is just a map from
Ω to R.

Expectation The expectation of a random variable X is the integral of X over Ω. For
finite spaces, this is just the sum ∑

ωinΩ

Pr(ω) ·X(ω).

2 Example 1: Ramsey Numbers

The probabilistic method in combinatorics first arose in 1947, when Erdös used it to prove
the following claim:

Theorem 1 R(k, k) > b2k/2c.

Proof. Fix some value of n, and consider a random uniformly-chosen 2-coloring of Kn’s
edges: in other words, let us work in the probability space (Ω, P r) = (all 2-colorings of Kn’s

edges, Pr(ω) = 1/2(n2).)
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For some fixed set R of k vertices in V (Kn), let AR be the event that the induced
subgraph on R is monochrome. Then, we have that

Pr(AR) = 2 ·
(

2(n2)−(k2)
)
/2(n2) = 21−(k2).

Thus, we have that the probability of at least one of the AR’s occuring is bounded by

Pr(
⋃
|R|=k

AR) ≤
∑

R⊂Ω,|R|=k

Pr(AR) =

(
n

k

)
21−(k2).

If we can show that
(
n
k

)
21−(k2) is less that 1, then we know that with nonzero probability

there will be some 2-coloring ω ∈ Ω in which none of the AR’s occur! In other words, we
know that there is a 2-coloring of Kn that avoids both a red and a blue Kk.

Solving, we see that(
n

k

)
21−(k2) <

nk

k!
· 21+(k/2)−(k2/2) =

21+k/2

k!
· nk

2k2/2
< 1

whenever n = b2k/2c, k ≥ 3. So we’re done!

So: why did we do this? In other words, what did using probabilistic methods gain us?
The answer, essentially, is that the probabilistic method allows us to work with graphs

that are both large and unstructured ! When using constructive methods, we can rarely (if
at all) do this! I.e.:

• If you’re trying to construct a large graph by gluing together pieces of smaller graphs,
you are almost always inducing a lot of structure into your larger graph; consequently,
your construction will usually be a highly atypical graph! For example, try construct-
ing a graph of both girth and chromatic number greater than 6 – you’ll quickly find
that it’s stunningly difficult to avoid introducing structure in any building method
that won’t create small cycles or small chromatic numbers. Yet, using the proba-
bilistic method we can easily show that there are graphs of arbitrarily high girth and
chromatic number! – in fact, that almost all sufficiently large graphs are such things.

• Conversely, suppose that you’re trying to avoid such problems, and have decided to
simply check by hand all of the cases for some reasonably small number of vertices –

say, 20. But there are 2(202 ) = 2190 ≈ 1.5 ∗ 1057 such graphs! Even with stunningly
powerful supercomputers, there’s no hope. Yet, with the probabilistic method, we
will routinely create counterexamples with > 1010 vertices in them! – things we could
never hope to find in any deterministic search.

3 Example 2: Splitting Graphs

We close here with one last example of the probabilistic method:

Theorem 2 If G is a graph, then G contains a bipartite subgraph with at least E/2 edges.
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Proof. Pick a subset of G’s vertices, T , uniformly at random (i.e. select T by flipping a
coin for each of G’s vertices, and placing vertices in T iff our coin comes up heads.) Let
B = V (G) \ T .

Call an edge {x, y} of E(G) crossing iff exactly one of x, y lie in T , and let X be the
random variable defined by

X(T ) = number of crossing edges for T.

Then, we have that

X(T ) =
∑

Xx,y(T ),

where Xx,y(T ) is the 0-1 random variable defined by Xx,y(T ) = 1 if {x, y} is an edge of G
that’s crossing, and 0 otherwise.

The expectation E(Xx,y) is clearly 1/2, because we chose x and y to be in T at random.
Thus, by the linearity of expectation, we have that

E(X) =
∑

E(Xx,y) = E/2.

so the expected number of crossing edges for a random subset of G is E/2. Thus, there
must be some T ⊂ V (G) such that X(T ) ≥ E/2; taking the collection of crossing edges this
set creates then gives us a bipartite graph (B, T ) with ≥ E/2 edges in it.
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