Probabilistic Methods in Graph Theory Instructor: Paddy

Homework 2: High Girth and Chromatic Number

Week 1 of 1
Mathcamp 2010

So: 3 and 4 on yesterday's set were pretty tricky! More tricky than I remembered, even. I've added some hints here to illustrate how to attack those problems, if you want to return to them.

1 Old Problems + New Hints

1. Show that every set of $B=\left\{b_{1}, \ldots b_{n}\right\}$ of n nonzero integers contains a sum-fre ${ }^{1}$ subset of size $\geq n / 3$.
Hint: pick some prime p that's larger than twice the maximum absolute value of elements in B, and look at B modulo p - i.e., look at B in $\mathbb{Z} / p \mathbb{Z}$. Because of our clever choice of p, all of the elements in B are distinct $\bmod p$ (prove this!)
Now, look at the sets $x B:=\{x \cdot b: b \in B\}$ in $\mathbb{Z} / p \mathbb{Z}$. Using the probabilstic method, show that there is some value of x such that more than a third of the elements of $x B$ lie between $p / 3$ and $2 p / 3$. Conclude from this (how?) that there is a sum-free subset of B of size at least $|B| / 3$.
2. Let G be a graph on $n \geq 10$ vertices, and suppose that G has the following property: if we add to G any edge not in G, then the number of copies of K_{10} in G increases. Show that $|E(G)| \geq 8 n-36$.

Hint: This was far harder than I remembered; the best outline to a solution I know follows below.

Definition. Let S be some arbitary set, and $F=\left\{A_{i}, B_{i}\right\}_{i=1}^{n}$ some collection of pairs of this subset. We say that F is a $(k, l)-$ system iff

- $\left|A_{i}\right|=k$, for all i,
- $\left|B_{i}\right|=l$, for all i,
- $\left|A_{i} \cap B_{i}\right|=\emptyset$, for all i, and
- $\left|A_{i} \cap B_{j}\right| \neq \emptyset$, for all distinct $i \neq j$.

Proposition 1 If $F=\left\{A_{i}, B_{i}\right\}_{i=1}^{n}$ is a (k, l)-system, then $n \leq\binom{ k+l}{l}$.
Proof. (Sketch): let $X=\bigcup_{i=1}^{n}\left(A_{i} \cup B_{i}\right)$, and consider a random ordering π of X 's elements. For each i, let X_{i} be the event that all of A_{i} 's elements preceed B_{i} 's elements in this order. Then, we have the following (which you can show!)

[^0]- $\operatorname{Pr}\left(X_{i}\right)=1 /\binom{k+l}{l}$.
- All of the events X_{i} are pairwise disjoint; i.e. there is no way for two of the X_{i} 's to occur simultaneously.

Thus, we have that

$$
1 \geq \operatorname{Pr}\left(\bigcup_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}\right)=n /\binom{k+l}{l}
$$

thus, we have that $n \leq\binom{ k+l}{l}$ as claimed.
Proposition 2 Define the following sets:

- For our graph G, let \bar{E} be the collection of non-edges of our graph G.
- For every edge e in E, pick some K_{10} formed by adding e: let A_{e} be the collection of vertices in G that are not involved in this K_{10}.
- For every edge e in E, define B_{e} as the endpoints of the edge e.

We claim that this forms a ($n-10,2$)-system.
Corollary 3 By combining our above propositions, $|\bar{E}| \leq\binom{ n-8}{2}$; consequently, we have that

$$
|E|=\binom{n}{2}-|\bar{E}| \geq\binom{ n}{2}-\binom{n-8}{2}=8 n-36 .
$$

2 New Problems

3. Construct (i.e. don't use probabilistic methods!) a triangle-free graph with arbitarily large chromatic number.
Hint: induct! i.e. let G_{2} be a graph with a single edge. Construct G_{n+1} from G_{n} as follows:

- At first, let G_{n+1} be the union of a copy of G_{n} on the vertex set V, along with V^{\prime} new vertices (where $|V|=\left|V^{\prime}\right|$,) and one more new vertex x.
- For every vertex $v^{\prime} \in V^{\prime}$ that's a copy of some $v \in V$, add edges from v^{\prime} to every $w \in V$ such that $(v, w) \in G_{n}$.
- Connect x to every vertex of V^{\prime}.

Show that this works!
4. As above, but with girth ≥ 6 !

[^0]: ${ }^{1}$ A subset of \mathbb{R} is called sum-free if adding any two elements in the subset will never give you an element of the subset.

