Probabilistic Methods in Graph Theory	Instructor: Paddy
Homework 1: An Introduction to the Probabilistic Method	
Week 1 of 1	Mathcamp 2010

1. Show that there is a 2 -coloring of K_{n} with at most $\binom{n}{a} \cdot\left(2^{1-\binom{a}{2}}\right)$-many monochromatic K_{a} 's in it.
2. Show that there is a 2 -coloring of $K_{m, n}$ with at most $\binom{m}{a}\binom{n}{b} \cdot\left(2^{1-a b}\right)$-many monochromatic $K_{a, b}$'s in it.
3. Show that every set of $B=\left\{b_{1}, \ldots b_{n}\right\}$ of n nonzero integers contains a sum-fre \int^{1} subset of size $\geq n / 3$.
4. Let G be a graph on at least 10 vertices, and suppose that G has the following property: if we add to G any edge not in G, then the number of copies of K_{10} in G increases. Show that $|G| \geq 8 n-36$.
[^0]
[^0]: ${ }^{1}$ A subset of \mathbb{R} is called sum-free if adding any two elements in the subset will never give you an element of the subset.

