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Lecture 5: Ramsey Theory

Week 1 of 1 Mathcamp 2010

Question 1 Amongst any collection of 6 people, can you always find three mutual friends
or three mutual strangers?

Solution. In the language of graph theory, our question is the following: if you (possibly
improperly) color the edges of K6 red and blue, do you always have to create a monochrome
triangle?

We claim that you will always do so. To see why: pick any red-blue coloring of K6,
and any vertex v ∈ K6. There must be three edges leaving v of one of our two colors,
as deg(v) = 5; suppose without loss of generality that those three edges are red. Let
{w1, w2, w3} be the endpoints of these edges.

Then, there are two cases:

• There is some edge {wi, wj} that’s red. In this case, the vertices v, wi, wj form a red
triangle.

• Every edge {wi, wj} is blue. In this case, the vertices w1, w2, w3 form a blue triangle.

A natural generalization of the above question is the following:

Question 2 Let C = {1, . . . c} be some collection of colors, and n1, . . . nc integers. Is there
always some value of n such that if Kn is colored with c colors, then Kn necessarily contains
a i-monochrome Kni, for some 1 ≤ i ≤ c?

Theorem 3 (Ramsey’s Theorem) The answer to this question is yes!

Proof. Let R(n1, . . . , nc) denote the smallest value of n such that if Kn is colored with
c colors, then Kn necessarily contains a i-monochrome Kni . We seek to show that R is
well-defined.

To do this, we proceed by induction on the number of colors C = {1, . . . , c}. When
c = 1, note that this is trivial, as R(k) = k for all k.

Now, consider the two-color case. We trivially have R(n, 1) = R(1, n) = 1 and R(n, 2) =
R(2, n) = n. Furthermore, we claim that we have the following recursive bound on the
growth of R(r, s) :

R(r, s) ≤ R(r, s− 1) + R(r − 1, s).

To see why: take a complete graph K on (R(r, s− 1) + R(r − 1, s)) many vertices, and
color its edges red and blue (or 1 and 2, if you prefer integers). Pick any v ∈ K, and
partition the rest of K’s vertices into two sets:

• B′, which contains all of the vertices in K connected to v by a blue edge, and

1



• R′, which contains all of the vertices in K connected to v by a red edge.

Let B and R be the subgraphs of K induced by these vertices, respectively.
Because K has

R(r, s− 1) + R(r − 1, s) = |B|+ |R|+ 1

many vertices, either |B| ≥ R(r, s − 1) or |R| ≥ R(r − 1, s). If the former, then induction
on the values of r and s tells us that we either have

• a blue Ks inside of B, or

• a red Kr−1 inside of R, in which case we have that there’s a red Kr inside of v ∪R;

consequently, we’re done! (Analogous reasoning applies to the case |R| ≥ R(r − 1, s).)
So: now suppose that we’ve settled our theorem for c − 1 colors. We seek to resolve it

for c colors. Specifically, we make the following claim:

R(n1, . . . nc) ≤ R(n1, . . . nc−2, (R(nc−1, Rc))).

To see this: let K be the complete graph on R(n1, . . . nc−2, (R(nc−1, Rc))) many vertices,
and color K’s vertices with c different colors.

Now: become selectively colorblind! In other words, pretend temporarily that c− 1 and
c have the same colors.

Then, by our inductive hypothesis, either

• there is an i-monochrome Kni , for 1 ≤ i ≤ c− 2, or

• there is a (c&c− 1)-colored KR(nc−1,nc). By the definition of R(nc−1, nc), this means
that there’s either a (c− 1)-monochrome Knc−1 , or a c-monochrome Knc .

So we’re done!

In the language of the proof above, the opening question for this lecture can be thought
of as showing R(3, 3) = 6.

To illustrate a few ideas that go into finding a Ramsey number, and to maybe illustrate
some of the difficulty of finding such numbers, consider the following question:

Question 4 What’s K3,4?

Solution. Pick n such that for any red-blue coloring of Kn, we have neither a blue K3 nor
a red K4. Pick any x ∈ Kn, and again let

• B be the subgraph induced by the set of vertices in Kn connected to v by a blue edge,
and

• R be the subgraph induced by the set in Kn connected to v by a red edge.
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If there is a blue edge in B, then x ∪ B will yield a blue K3; similarly, if there is a red K3

in R, x ∪ R yields a red K4. Because R(2, 4) = 4 and R(3, 3) = 6, we have that if neither
situation occurs, we must have |B| ≤ 3 and |R| ≤ 5. In other words, we’ve just shown
that for any vertex x ∈ Kn, we have degb(x) ≤ 3 and degr(x) ≤ 5. Consequently, the total
degree of x must be ≤ 8; i.e. n ≤ 9, and thus R(3, 4) ≤ 10.

Consider the case n = 9. In this case, each x must have degb(x) = 3 and degr(x) = 5;
consequently, the number of blue edges in Kn can be counted, via the degree-sum formula,
to be 1
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∑
x∈Kn

degb(x) = 27/2 = 13.5. Since we can’t have half of a blue edge, this is also
impossible! So R(3, 4) ≤ 9.

Conversely: consider the following drawing below. The solid edges form a graph with
girth ≥ 4, and so do not contain a K3. As well, picking any four points on the boundary of
a 8-cycle necessarily involves picking two opposite points or two adjacent points; so there
is no complete K4 amongst 4 points within the dashed edges.

Thus, R(3, 4) > 8; i.e. R(3, 4) = 9.
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