Graph Colorings

Instructors: Marisa and Paddy

Lecture 5: Ramsey Theory

Week 1 of 1

Mathcamp 2010

Question 1 Amongst any collection of 6 people, can you always find three mutual friends or three mutual strangers?

Solution. In the language of graph theory, our question is the following: if you (possibly improperly) color the edges of K_6 red and blue, do you always have to create a monochrome triangle?

We claim that you will always do so. To see why: pick any red-blue coloring of K_6 , and any vertex $v \in K_6$. There must be three edges leaving v of one of our two colors, as deg(v) = 5; suppose without loss of generality that those three edges are red. Let $\{w_1, w_2, w_3\}$ be the endpoints of these edges.

Then, there are two cases:

- There is some edge $\{w_i, w_j\}$ that's red. In this case, the vertices v, w_i, w_j form a red triangle.
- Every edge $\{w_i, w_j\}$ is blue. In this case, the vertices w_1, w_2, w_3 form a blue triangle.

A natural generalization of the above question is the following:

Question 2 Let $C = \{1, ..., c\}$ be some collection of colors, and $n_1, ..., n_c$ integers. Is there always some value of n such that if K_n is colored with c colors, then K_n necessarily contains a *i*-monochrome K_{n_i} , for some $1 \le i \le c$?

Theorem 3 (Ramsey's Theorem) The answer to this question is yes!

Proof. Let $R(n_1, \ldots, n_c)$ denote the smallest value of n such that if K_n is colored with c colors, then K_n necessarily contains a *i*-monochrome K_{n_i} . We seek to show that R is well-defined.

To do this, we proceed by induction on the number of colors $C = \{1, \ldots, c\}$. When c = 1, note that this is trivial, as R(k) = k for all k.

Now, consider the two-color case. We trivially have R(n,1) = R(1,n) = 1 and R(n,2) = R(2,n) = n. Furthermore, we claim that we have the following recursive bound on the growth of R(r,s):

$$R(r,s) \le R(r,s-1) + R(r-1,s).$$

To see why: take a complete graph K on (R(r, s - 1) + R(r - 1, s)) many vertices, and color its edges red and blue (or 1 and 2, if you prefer integers). Pick any $v \in K$, and partition the rest of K's vertices into two sets:

• B', which contains all of the vertices in K connected to v by a blue edge, and

• R', which contains all of the vertices in K connected to v by a red edge.

Let B and R be the subgraphs of K induced by these vertices, respectively. Because K has

$$R(r, s - 1) + R(r - 1, s) = |B| + |R| + 1$$

many vertices, either $|B| \ge R(r, s - 1)$ or $|R| \ge R(r - 1, s)$. If the former, then induction on the values of r and s tells us that we either have

- a blue K_s inside of B, or
- a red K_{r-1} inside of R, in which case we have that there's a red K_r inside of $v \cup R$;

consequently, we're done! (Analogous reasoning applies to the case $|R| \ge R(r-1,s)$.)

So: now suppose that we've settled our theorem for c-1 colors. We seek to resolve it for c colors. Specifically, we make the following claim:

 $R(n_1, \dots n_c) \leq R(n_1, \dots n_{c-2}, (R(n_{c-1}, R_c))).$

To see this: let K be the complete graph on $R(n_1, \ldots n_{c-2}, (R(n_{c-1}, R_c)))$ many vertices, and color K's vertices with c different colors.

Now: become selectively colorblind! In other words, pretend temporarily that c-1 and c have the same colors.

Then, by our inductive hypothesis, either

- there is an *i*-monochrome K_{n_i} , for $1 \le i \le c-2$, or
- there is a (c&c-1)-colored $K_{R(n_{c-1},n_c)}$. By the definition of $R(n_{c-1},n_c)$, this means that there's either a (c-1)-monochrome $K_{n_{c-1}}$, or a *c*-monochrome K_{n_c} .

So we're done!

In the language of the proof above, the opening question for this lecture can be thought of as showing R(3,3) = 6.

To illustrate a few ideas that go into finding a Ramsey number, and to maybe illustrate some of the difficulty of finding such numbers, consider the following question:

Question 4 What's $K_{3,4}$?

Solution. Pick n such that for any red-blue coloring of K_n , we have neither a blue K_3 nor a red K_4 . Pick any $x \in K_n$, and again let

- B be the subgraph induced by the set of vertices in K_n connected to v by a blue edge, and
- R be the subgraph induced by the set in K_n connected to v by a red edge.

If there is a blue edge in B, then $x \cup B$ will yield a blue K_3 ; similarly, if there is a red K_3 in $R, x \cup R$ yields a red K_4 . Because R(2,4) = 4 and R(3,3) = 6, we have that if neither situation occurs, we must have $|B| \leq 3$ and $|R| \leq 5$. In other words, we've just shown that for any vertex $x \in K_n$, we have $deg_b(x) \leq 3$ and $deg_r(x) \leq 5$. Consequently, the total degree of x must be ≤ 8 ; i.e. $n \leq 9$, and thus $R(3,4) \leq 10$.

Consider the case n = 9. In this case, each x must have $deg_b(x) = 3$ and $deg_r(x) = 5$; consequently, the number of blue edges in K_n can be counted, via the degree-sum formula, to be $\frac{1}{2} \sum_{x \in K_n} deg_b(x) = 27/2 = 13.5$. Since we can't have half of a blue edge, this is also impossible! So $R(3, 4) \leq 9$.

Conversely: consider the following drawing below. The solid edges form a graph with girth ≥ 4 , and so do not contain a K_3 . As well, picking any four points on the boundary of a 8-cycle necessarily involves picking two opposite points or two adjacent points; so there is no complete K_4 amongst 4 points within the dashed edges.

Thus, R(3,4) > 8; i.e. R(3,4) = 9.