Graph Colorings \quad Instructors: Marisa and Paddy

Lecture 5: Ramsey Theory

Week 1 of 1 Mathcamp 2010

Question 1 Amongst any collection of 6 people, can you always find three mutual friends or three mutual strangers?

Solution. In the language of graph theory, our question is the following: if you (possibly improperly) color the edges of K_{6} red and blue, do you always have to create a monochrome triangle?

We claim that you will always do so. To see why: pick any red-blue coloring of K_{6}, and any vertex $v \in K_{6}$. There must be three edges leaving v of one of our two colors, as $\operatorname{deg}(v)=5$; suppose without loss of generality that those three edges are red. Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be the endpoints of these edges.

Then, there are two cases:

- There is some edge $\left\{w_{i}, w_{j}\right\}$ that's red. In this case, the vertices v, w_{i}, w_{j} form a red triangle.
- Every edge $\left\{w_{i}, w_{j}\right\}$ is blue. In this case, the vertices w_{1}, w_{2}, w_{3} form a blue triangle.

A natural generalization of the above question is the following:
Question 2 Let $C=\{1, \ldots c\}$ be some collection of colors, and $n_{1}, \ldots n_{c}$ integers. Is there always some value of n such that if K_{n} is colored with c colors, then K_{n} necessarily contains a i-monochrome $K_{n_{i}}$, for some $1 \leq i \leq c$?

Theorem 3 (Ramsey's Theorem) The answer to this question is yes!
Proof. Let $R\left(n_{1}, \ldots, n_{c}\right)$ denote the smallest value of n such that if K_{n} is colored with c colors, then K_{n} necessarily contains a i-monochrome $K_{n_{i}}$. We seek to show that R is well-defined.

To do this, we proceed by induction on the number of colors $C=\{1, \ldots, c\}$. When $c=1$, note that this is trivial, as $R(k)=k$ for all k.

Now, consider the two-color case. We trivially have $R(n, 1)=R(1, n)=1$ and $R(n, 2)=$ $R(2, n)=n$. Furthermore, we claim that we have the following recursive bound on the growth of $R(r, s)$:

$$
R(r, s) \leq R(r, s-1)+R(r-1, s) .
$$

To see why: take a complete graph K on $(R(r, s-1)+R(r-1, s))$ many vertices, and color its edges red and blue (or 1 and 2 , if you prefer integers). Pick any $v \in K$, and partition the rest of K 's vertices into two sets:

- B^{\prime}, which contains all of the vertices in K connected to v by a blue edge, and
- R^{\prime}, which contains all of the vertices in K connected to v by a red edge.

Let B and R be the subgraphs of K induced by these vertices, respectively.
Because K has

$$
R(r, s-1)+R(r-1, s)=|B|+|R|+1
$$

many vertices, either $|B| \geq R(r, s-1)$ or $|R| \geq R(r-1, s)$. If the former, then induction on the values of r and s tells us that we either have

- a blue K_{s} inside of B, or
- a red K_{r-1} inside of R, in which case we have that there's a red K_{r} inside of $v \cup R$;
consequently, we're done! (Analogous reasoning applies to the case $|R| \geq R(r-1, s)$.)
So: now suppose that we've settled our theorem for $c-1$ colors. We seek to resolve it for c colors. Specifically, we make the following claim:

$$
R\left(n_{1}, \ldots n_{c}\right) \leq R\left(n_{1}, \ldots n_{c-2},\left(R\left(n_{c-1}, R_{c}\right)\right)\right)
$$

To see this: let K be the complete graph on $R\left(n_{1}, \ldots n_{c-2},\left(R\left(n_{c-1}, R_{c}\right)\right)\right)$ many vertices, and color K 's vertices with c different colors.

Now: become selectively colorblind! In other words, pretend temporarily that $c-1$ and c have the same colors.

Then, by our inductive hypothesis, either

- there is an i-monochrome $K_{n_{i}}$, for $1 \leq i \leq c-2$, or
- there is a $(c \& c-1)$-colored $K_{R\left(n_{c-1}, n_{c}\right)}$. By the definition of $R\left(n_{c-1}, n_{c}\right)$, this means that there's either a $(c-1)$-monochrome $K_{n_{c-1}}$, or a c-monochrome $K_{n_{c}}$.

So we're done!
In the language of the proof above, the opening question for this lecture can be thought of as showing $R(3,3)=6$.

To illustrate a few ideas that go into finding a Ramsey number, and to maybe illustrate some of the difficulty of finding such numbers, consider the following question:

Question 4 What's $K_{3,4}$?
Solution. Pick n such that for any red-blue coloring of K_{n}, we have neither a blue K_{3} nor a red K_{4}. Pick any $x \in K_{n}$, and again let

- B be the subgraph induced by the set of vertices in K_{n} connected to v by a blue edge, and
- R be the subgraph induced by the set in K_{n} connected to v by a red edge.

If there is a blue edge in B, then $x \cup B$ will yield a blue K_{3}; similarly, if there is a red K_{3} in $R, x \cup R$ yields a red K_{4}. Because $R(2,4)=4$ and $R(3,3)=6$, we have that if neither situation occurs, we must have $|B| \leq 3$ and $|R| \leq 5$. In other words, we've just shown that for any vertex $x \in K_{n}$, we have $\operatorname{deg}_{b}(x) \leq 3$ and $\operatorname{deg}_{r}(x) \leq 5$. Consequently, the total degree of x must be ≤ 8; i.e. $n \leq 9$, and thus $R(3,4) \leq 10$.

Consider the case $n=9$. In this case, each x must have $\operatorname{deg}_{b}(x)=3$ and $\operatorname{deg}_{r}(x)=5$; consequently, the number of blue edges in K_{n} can be counted, via the degree-sum formula, to be $\frac{1}{2} \sum_{x \in K_{n}} d e g_{b}(x)=27 / 2=13.5$. Since we can't have half of a blue edge, this is also impossible! So $R(3,4) \leq 9$.

Conversely: consider the following drawing below. The solid edges form a graph with girth ≥ 4, and so do not contain a K_{3}. As well, picking any four points on the boundary of a 8 -cycle necessarily involves picking two opposite points or two adjacent points; so there is no complete K_{4} amongst 4 points within the dashed edges.

Thus, $R(3,4)>8$; i.e. $R(3,4)=9$.

