
Graph Colorings Instructors: Marisa and Paddy

Lecture 4: Snarks!

Week 1 of 1 Mathcamp 2010

1 Glossary

Cut-edge An edge e of a graph G is called a cut-edge if removing it from G increases the
number of connected components.

Bridgeless A graph G is bridgeless iff it has no cut-edges.

Snark A snark is a connected bridgeless 3-regular graph with girth ≥ 5 and edge chromatic
number ≥ 4.

Dot product of graphs Given a pair of snarks G, H, we can form their dot product by
manipulating a pair of disjoint edges {u, v}, {w, x} in G and adjacent vertices y, z in
H as shown below:
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2 Snarks!

Theorem 1 (Snark Theorem: 2001, Robertson, Sanders, Seymour, and Thomas) Every
snark contains the Petersen graph as a minor.

Corollary 2 The four-color theorem holds.

Snarks are a particular kind of graph that have been intensely studied since the 1880’s,
when Tait showed that proving the Snark Theorem would imply the four-color theorem;
their (rather curious) name stems from the Lewis Carrol poem “The Hunting of the Snark1.”

1An exerpt from the poem:

They sought it with thimbles, they sought it with care;
They pursued it with forks and hope;
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To this day, they remain a remarkably mysterious collection of graphs, about which modern
graph theory knows rather little – indeed, by 1973, graph theoreticians had only discovered
5 snarks in total! In this lecture, we’ll prove a few propositions about snarks, and show how
we can use a rather simple operation to create an infinte family of snarks.

Proposition 3 The Petersen graph P is a snark.

Proof. We first note the following useful lemma:

Lemma 4 There is an automorphism of the Petersen graph that swaps the outer pentagon
and the inner star.

Proof. In this case, a picture is worth a thousand proofs:

Given the above lemma, we now proceed to check the five properties required to be a
snark:

• Connected: trivially true.

• Bridgeless: also trivially true.

• 3-regular: again, trivially true, as every vertex has degree 3.

• Girth 5: we mentioned this in week 1, but it bears mentioning again. Suppose not:
that P has a cycle of length ≤ 4. Such a cycle cannot live entirely within the inner or
outer 5-cycles of P ; so it has to involve two of the “cross-edges” (the edges connecting
the outer pentagon and inner star) of P . Pick any two such cross-edges; then, by
our lemma, we can insist (by moving P around) that these cross-edges involve two
non-adjacent vertices on the outer cycle of P . But then we have to use at least two
more edges on the outer cycle to connect these two cross-edges! So this cycle must
have ≥ 5 edges.

• 4-edge-colorable: to see this, again proceed by contradiction. Suppose not; that we
have a way of partitioning P ’s edges into 3 color classes, R, G, and B in such a way
that within each color class, there are no two adjacent edges. Then each color class
can have no more than |V (P )|/2 = 10/2 = 5-many edges, as we can use each vertex
at most once in a given color class and each edge uses two vertices. But |E(P )| = 15
– so each color class has exactly 5 edges! In other words, each color class is a 1-factor!

They threatened its life with a railway-share;
They charmed it with smiles and soap.
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We seek to show that this is impossible: i.e. that P cannot be decomposed into
1-factors. So: to do this, take any 1-factor and delete it from P . We then claim
that the resulting 2-factor is isomorphic to a pair of disjoint pentagons, and thus
cannot be decomposed into 2 1-factors (as doing so would create a 2-edge-coloring of
a pentagon.)

First, observe that in any 2-factor, we always have an even number of cross-edges.
Why is this? Because 2-factors are made out of disjoint cycles: thus, if any cycle
leaves either the inside or outside along a cross-edge, it must return along another
cross-edge. So, three possibilities exist:

1 2 3

– We use no cross-edges. In this case, we have two pentagons; specifically, the
inner and outer pentagons of P .

– We use 2 cross-edges. In this case, we can again insist (by our lemma) that the
cross-edges used are specifically the two depicted above. In this case, because
these two cross edges involve nonadjacent endpoints, they force us to include the
entire outer cycle of P in our 2-factor – but this creates vertices of degree 3! So
this is impossible.

– We use 4 cross-edges. In this case, the cycle edges forced into our 2-factor again
form 2 pentagons.

So: we have a snark! How can we get more? The answer, it turns out, is via dot
products!

Proposition 5 The dot product preserves snarkiness.

Proof. We first claim that the only interesting property to check is whether the dot product
of two snarks is a snark; if you’re not persuaded that this is true, check the other properties
yourself!

So: we first prove the following extremely handy lemma:

Lemma 6 Suppose that G is a 3-regular graph that’s 3-edge-colorable. Let Z be a collection
of nonadjacent edges in G that satisfies the following property: if we delete the Z-edges from
our graph G, G is disconnected into two components A and B, such that each edge of Z
has one endpoint in A and one in B. Let ni be the number of edges in Z colored i, for
i = 1, 2, 3. Then the ni are all congruent modulo 2.
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Proof. Let A and B be two parts of G that Z divides G into. Pick some color ci, and look
at the vertices of A. Because G is cubic, every vertex a ∈ A has an edge of every color
entering it; so there are two possibilities: either

• the ci-colored edge entering a is in Z, or

• the ci-colored edge entering a goes to some other vertex in A.

Consequently, we have that |A| is equal to ni plus some even number; as a result, all of the
ni’s are congruent to |A| (and thus to each other!) mod 2.

So: revisit the dot product picture.
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Suppose not; that this graph is 3-edge colorable, and fix some 3-edge-coloring. By our
above lemma, we know that all of the colors involved in {e, f, g, h} have to be congruent mod
2; consequently, one color has to be omitted! Thus, we can say without loss of generality
that the four edges above possess one of the following colorings:

• e, f, g, h are all colored 1;

• e, f are colored 1, g, h are colored 2;

• e, g are colored 1, f, h are colored 2.

In case 1, we can turn this into a 3-edge-coloring of G by coloring both u, v and w, x 1;
in case 2, we can color the five edges deleted when we removed y and z 1, 2,3 as depicted
below; and in case 3, we can just color u, v 1 and w, x 2. So we’re done!
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