Graph Colorings \quad Lecture 4: Snarks!

Week 1 of 1
Mathcamp 2010

1 Glossary

Cut-edge An edge e of a graph G is called a cut-edge if removing it from G increases the number of connected components.

Bridgeless A graph G is bridgeless iff it has no cut-edges.
Snark A snark is a connected bridgeless 3-regular graph with girth ≥ 5 and edge chromatic number ≥ 4.

Dot product of graphs Given a pair of snarks G, H, we can form their dot product by manipulating a pair of disjoint edges $\{u, v\},\{w, x\}$ in G and adjacent vertices y, z in H as shown below:

2 Snarks!

Theorem 1 (Snark Theorem: 2001, Robertson, Sanders, Seymour, and Thomas) Every snark contains the Petersen graph as a minor.

Corollary 2 The four-color theorem holds.
Snarks are a particular kind of graph that have been intensely studied since the 1880's, when Tait showed that proving the Snark Theorem would imply the four-color theorem; their (rather curious) name stems from the Lewis Carrol poem "The Hunting of the Snark $\mathbb{1}$ "

[^0]To this day, they remain a remarkably mysterious collection of graphs, about which modern graph theory knows rather little - indeed, by 1973, graph theoreticians had only discovered 5 snarks in total! In this lecture, we'll prove a few propositions about snarks, and show how we can use a rather simple operation to create an infinte family of snarks.

Proposition 3 The Petersen graph P is a snark.
Proof. We first note the following useful lemma:
Lemma 4 There is an automorphism of the Petersen graph that swaps the outer pentagon and the inner star.

Proof. In this case, a picture is worth a thousand proofs:

Given the above lemma, we now proceed to check the five properties required to be a snark:

- Connected: trivially true.
- Bridgeless: also trivially true.
- 3-regular: again, trivially true, as every vertex has degree 3 .
- Girth 5: we mentioned this in week 1, but it bears mentioning again. Suppose not: that P has a cycle of length ≤ 4. Such a cycle cannot live entirely within the inner or outer 5 -cycles of P; so it has to involve two of the "cross-edges" (the edges connecting the outer pentagon and inner star) of P. Pick any two such cross-edges; then, by our lemma, we can insist (by moving P around) that these cross-edges involve two non-adjacent vertices on the outer cycle of P. But then we have to use at least two more edges on the outer cycle to connect these two cross-edges! So this cycle must have ≥ 5 edges.
- 4-edge-colorable: to see this, again proceed by contradiction. Suppose not; that we have a way of partitioning P 's edges into 3 color classes, R, G, and B in such a way that within each color class, there are no two adjacent edges. Then each color class can have no more than $|V(P)| / 2=10 / 2=5$-many edges, as we can use each vertex at most once in a given color class and each edge uses two vertices. But $|E(P)|=15$ - so each color class has exactly 5 edges! In other words, each color class is a 1 -factor!

They threatened its life with a railway-share; They charmed it with smiles and soap.

We seek to show that this is impossible: i.e. that P cannot be decomposed into 1 -factors. So: to do this, take any 1 -factor and delete it from P. We then claim that the resulting 2 -factor is isomorphic to a pair of disjoint pentagons, and thus cannot be decomposed into 21 -factors (as doing so would create a 2 -edge-coloring of a pentagon.)
First, observe that in any 2-factor, we always have an even number of cross-edges. Why is this? Because 2 -factors are made out of disjoint cycles: thus, if any cycle leaves either the inside or outside along a cross-edge, it must return along another cross-edge. So, three possibilities exist:

- We use no cross-edges. In this case, we have two pentagons; specifically, the inner and outer pentagons of P.
- We use 2 cross-edges. In this case, we can again insist (by our lemma) that the cross-edges used are specifically the two depicted above. In this case, because these two cross edges involve nonadjacent endpoints, they force us to include the entire outer cycle of P in our 2 -factor - but this creates vertices of degree 3! So this is impossible.
- We use 4 cross-edges. In this case, the cycle edges forced into our 2-factor again form 2 pentagons.

So: we have a snark! How can we get more? The answer, it turns out, is via dot products!

Proposition 5 The dot product preserves snarkiness.
Proof. We first claim that the only interesting property to check is whether the dot product of two snarks is a snark; if you're not persuaded that this is true, check the other properties yourself!

So: we first prove the following extremely handy lemma:
Lemma 6 Suppose that G is a 3-regular graph that's 3-edge-colorable. Let Z be a collection of nonadjacent edges in G that satisfies the following property: if we delete the Z-edges from our graph G, G is disconnected into two components A and B, such that each edge of Z has one endpoint in A and one in B. Let n_{i} be the number of edges in Z colored i, for $i=1,2,3$. Then the n_{i} are all congruent modulo 2.

Proof. Let A and B be two parts of G that Z divides G into. Pick some color c_{i}, and look at the vertices of A. Because G is cubic, every vertex $a \in A$ has an edge of every color entering it; so there are two possibilities: either

- the c_{i}-colored edge entering a is in Z, or
- the c_{i}-colored edge entering a goes to some other vertex in A.

Consequently, we have that $|A|$ is equal to n_{i} plus some even number; as a result, all of the n_{i} 's are congruent to $|A|$ (and thus to each other!) mod 2.

So: revisit the dot product picture.

Suppose not; that this graph is 3 -edge colorable, and fix some 3-edge-coloring. By our above lemma, we know that all of the colors involved in $\{e, f, g, h\}$ have to be congruent mod 2 ; consequently, one color has to be omitted! Thus, we can say without loss of generality that the four edges above possess one of the following colorings:

- e, f, g, h are all colored 1 ;
- e, f are colored $1, g, h$ are colored 2 ;
- e, g are colored $1, f, h$ are colored 2.

In case 1 , we can turn this into a 3 -edge-coloring of G by coloring both u, v and $w, x 1$; in case 2 , we can color the five edges deleted when we removed y and $z 1,2,3$ as depicted below; and in case 3 , we can just color $u, v 1$ and $w, x 2$. So we're done!

[^0]: ${ }^{1} \mathrm{An}$ exerpt from the poem:
 They sought it with thimbles, they sought it with care;
 They pursued it with forks and hope;

