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1 Glossary

Matching A matching H of a graph G is a 1-regular subgraph of G.

Line Graph The line graph L(G) of a graph G is the graph with vertex set given by the
edges of G, and an edge {e, f} in G iff these two edges are incident in G.

Edge Coloring A n-edge coloring of a graph G is a mapping from the set E(G) into the
set {1, 2, . . . n} such that no two incident edges receive the same colors.

Edge Chromatic Number The edge chromatic number of a graph G, χ′(G), is the small-
est value of n such that G admits a n-edge coloring.

2 Hall’s Marriage Theorem

Theorem 1 Take a bipartite graph G = (A,B). Then, the following conditions are equiv-
alent:

• G has a 1-factor.

• (Hall’s condition): For any subset X ⊂ A or X ⊂ B, if N(X) denotes the neighbors
of X, then |X| ≤ |N(X)|.

Proof. (⇒): Suppose that G has a 1-factor; because G is bipartite, such a 1-factor is just a
pairing-up of vertices in A and in B along edges in G. Thus, for any subset X ⊂ A, because
N(X) must contain the edges in this 1-factor, we have that |X| ≤ N(X) (and similarly for
X ⊂ B.)

(⇐): Take any matching M in G. Consider the following algorithm for creating an
alternating path between distinct vertices in A and B:

1. Suppose without loss of generality that M ’s not already a 1-factor, and pick some
a0 ∈ A that’s nor involved in M .

2. Suppose that the sequence a0b1a1b2a2 . . . bk−1ak−1 has been created. Then, because
the set {a0 . . . ak−1} of chosen A-vertices is strictly larger than the set {b1 . . . bk−1}of
chosen B-vertices, there must be some element b ∈ B that’s connected by some edge
{bi, a} to some previously-chosen ai, by Hall’s condition. Let bk be equal to b, and
define f(k) = i (so that {bk, af(k)} is the edge we used here to pick b.).
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3. If bk is in M , let ak be the vertex across from bk in M , and return to (2) to continue
to grow our sequence. Otherwise, end our sequence! By construction, we know that
bk is unique amongst the previously chosen bi’s; similarly, because we picked the ai
up to this point by using the matching M , we know that they’re all distinct. So this
is still a sequence of distinct vertices!

4. Let the sequence that this algorithm terminates with be denoted as a0b1 . . . bk−1ak−1bk.
Notice, now, that this sequence of vertices, by construction, have the following prop-
erties:

• a0 and bk are both unmatched.

• bi is adjacent to some element in {a0 . . . ai−1}.
• aibi is in M , for all i.

5. So: consider the following path, made by alternately following the edges of M and
the edges recorded by the function f :

bbk, {bk, af(k)}, af(k), {af(k), bf(k)}, bf(k), {bf(k), af2(k)}af2(k), . . . {bfn(k), afn+1(k)},

where afn+1(k) = a0.

All of the edges {af(k), bf(k)} lie in M , while none of the edges {bk, af(k)} lie in M ,
by construction. So, replace the collection of {af(k), bf(k)} in M with the collection
of {bk, af(k)} edges! This collection has precisely one more edge than the old col-
lection, and only deals with the vertices a0, bk (which weren’t in M anyways) and
a1 . . . ak−1, b1 . . . bk−1 (which were involved in edges we removed from M – so it pre-
serves M ’s status as a matching! Thus, repeating this process will allow us to grow
M into a 1-factor.

Corollary 2 A k-regular bipartite graph G = (A,B) can be decomposed into k disjoint
1-factors.

Proof. Pick any subset X ⊂ A or X ⊂ B of size n. Because G is k-regular, there are kn
distinct edges leaving X and entering N(X). Consequently, as each vertex has degree k,
there must be at least n vertices in N(X) to absorb these edges! – so |N(X)| ≥ |X|.

Thus, by Hall’s Marriage theorem, there is a 1-factor in G. Deleting it from G leaves a
k − 1-regular graph; so repeating this process leaves us with a decomposition of G into k
distinct 1-factors.

3 Edge Colorings

Proposition 3 A cycle Cn has edge-chromatic number χ′(G) = χ(G).

Proof. Take a cycle Cn, and consider its line graph L(Cn). This is another cycle! In fact,
it’s the same cycle as G, as it has the same number of vertices; thus, its edge chromatic
number is the same as G.
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Theorem 4 If G = (A,B) is a bipartite graph, then χ′(G) = ∆(G).

Proof. As we showed earlier in lecture, a k-regular bipartite graph G can be decomposed
into k disjoint 1-factors. Simply coloring each of these 1-factors a different color, then, will
insure that we have a k-edge-coloring of G, as no 1-factor contains two incident edges (by
definition.)

So, it suffices to show that we can embed any bipartite graph G with maximum degree
∆(G) as a subgraph of some ∆(G)-regular bipartite graph (as a k-edge coloring of a graph
gives, by restriction, a k-edge coloring of all of its subgraphs.) To do this,

• simply add vertices to either A or B so that both sides have the same number of
vertices, and then

• take any vertex a ∈ A that doesn’t have degree ∆(G). Then, because the number of
edges leaving A is the same as the number of edges entering B, and all vertices have
degree ≤ ∆(G), there must be some vertex b in B also with degree < ∆(G). Add an
edge between these two vertices! Repeat this process until the graph is ∆(G)-regular.
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