Generating Functions

Instructor: Paddy

Lecture 4: Sieves

Week 1 of 1

In previous lectures, we would often illustrate a generating-function method by opening with an example, and then discussing how it can generalize. This is often a productive way to build intuition; however, sometimes it's clearer to begin in full generality and then illustrate what we're doing by actually tackling a problem or two. Today is such a day!

Specifically, the motivating question for today's lecture on the sieve method is the following:

Question 1 Consider the following objects:

- Ω , some finite set of objects,
- P, some collection of properties that the elements of Ω may or may not have, and
- f: Ω → P(P), a function that sends any x ∈ Ω to the subset of P corresponding to the properties it has.

For a given r, how many objects in Ω have precisely r properties? What is the average number of properties possesed by a given element?

If the above notation is confusing, consider the following very basic example:

Example. Let

- $\Omega = \{1, 2, 3, 4\},\$
- $P = \{ \text{odd}, \text{ prime} \}, \text{ and }$
- $f(1) = \{ \text{odd} \}, f(2) = \{ \text{prime} \}, f(3) = \{ \text{odd}, \text{prime} \}, \text{ and } f(4) = \emptyset.$

. In this situation, our above question is trivial to answer: there is one element with no properties, two with one property, one with two properties, and the average number of properties possessed is 1.

So: for many quantities, it can be much easier to count how many objects have at **least** r properties rather than counting how many objects have precisely r properties. To illustrate this point, consider the following example:

Example. (Stirling numbers of the second kind) For fixed n, k, let

- Ω = the collection of all k^n ways of putting n labeled balls into k labeled boxes, and
- $P = \{P_1, \dots, P_k\}$, where P_i is the property that the *i*-th box is empty.

From this definition, we have that the number of elements that don't satisfy any properties is just

$$k! \left\{ \begin{matrix} n \\ k \end{matrix} \right\},$$

as failing to satisfy any of the P_i means that we've put a ball into every box (i.e. created a nontrivial partition of $\{1, \ldots, n\}$, and the k! comes from us now caring about how the boxes are labeled.

This, as we saw on class Tuesday, is nontrivial to find! However, for a fixed $S \subset P$, the number of elements of Ω that satisfy at least S is just $(k - |S|)^n$, which is completely trivial!

How can we use this to our advantage? In other words, how can we turn knowledge about the amount of objects possessing at least r properties into knowledge about objects possessing exactly r properties? Generating functions!

Specifically, for some fixed Ω, P, f , we do the following: Let N(S) be the number of elements in Ω that satisfy all of the properties in S, and let

$$N_r = \sum_{S \subset P: |S| = r} N(S).$$

Then, we have that

$$N_r = \sum_{S \subset P:|S|=r} N(S)$$
$$= \sum_{S \subset P:|S|=r} \left(\sum_{x \in \Omega: S \subset f(x)} 1 \right)$$
$$= \sum_{x \in \Omega} \left(\sum_{S \subset P:|S|=r, S \subset f(x)} 1 \right)$$
$$= \sum_{x \in \Omega} \binom{|f(x)|}{r}$$

This implies that every object with exactly t properties contributes $\binom{t}{r}$ to N_r . So, if we let e_t denote the coll. of objects with exactly t properties, we have that

$$N_r = \sum_{t=0}^{\infty} \binom{t}{r} e_t$$

So: let N(x) be the generating function for the N_r 's, and E(x) be the generating function

for the e_t 's. Then, we have the following (stunning!) identity:

$$N(x) = \sum_{r=0}^{\infty} N_r x^r$$
$$= \sum_{r=0}^{\infty} \left(\sum_{t=0}^{\infty} {t \choose r} e_t x^r \right)$$
$$= \sum_{t=0}^{\infty} e_t \cdot \left(\sum_{r=0}^{\infty} {t \choose r} x^r \right)$$
$$= \sum_{t=0}^{\infty} e_t (1+x)^t$$
$$= E(x+1).$$

So: via the toolset given to us by generating functions, we can convert back and forth between "exact" counting and "at-least" counting with absolutely no effort!

Specifically, this method – the method of "sieves" – gives us the following pair of remarkably useful answers to our earlier questions:

1. Because E(x) = N(x-1), we have that e_t is just the coefficient of x^t in N(x-1); i.e.

$$e_t = [x^t] \sum_{r=0}^{\infty} N_r (x-1)^r$$
$$= \sum_{r=0}^{\infty} N_r \cdot [x^t] (x-1)^r$$
$$= \sum_{r=0}^{\infty} (-1)^{r-t} {r \choose t} N_r.$$

So we can switch from the e_t 's and N_r 's with no difficulty whatsoever.

2. By our earlier work,

$$N_r = \sum_{t=0}^{\infty} {\binom{t}{r}} e_t$$

$$\Rightarrow \qquad N_1 = \sum_{t=0}^{\infty} t \cdot e_t$$

$$\Rightarrow \qquad \frac{N_1}{\Omega} = \text{the average number of properties possessed by an elt. of }\Omega.$$

So: to illustrate the power of what we've just done, we do an example below:

Example. Of the n! permutations of $\{1, \ldots, n\}$, how many have no fixed points¹? What is the expected number of fixed points for a random permutation?

¹We say that k is a fixed point of a permutation π iff $\pi(k) = k$

Solution. So: in our language of sets and properties, let

- Ω = the collection of all n! permutations, and
- $P = \{P_1, \ldots, P_n\}$, where P_i is the property that *i* is a fixed point.

Then, for any $S \subset P$, the number of permutations satisfying S, N(S), is just the number of permutations on points not fixed by S: i.e. (n - |S|)!.

Consequently, we have that

$$N_r = \sum_{|S|=r} N(S) = \sum_{|S|=r} (n-|S|)! = \binom{n}{r} (n-r)! = \frac{n!}{r!},$$

if $r \leq n$, and 0 otherwise. Thus, we have

$$N(x) = \sum_{r=0}^{n} \frac{n!}{r!} x^{r} = n! \cdot \sum_{r=0}^{n} \frac{x^{r}}{r!}$$

$$\Rightarrow \qquad E(x) = N(x-1) = n! \cdot \sum_{r=0}^{n} \frac{(x-1)^{r}}{r!}$$

$$\Rightarrow \qquad e_{0} = E(0) = N(-1) = n! \cdot \sum_{r=0}^{n} \frac{(-1)^{r}}{r!}$$

$$\Rightarrow \qquad e_{0} \approx \frac{n!}{e}.$$

So, the expected number of fixed points is just $N_1/n! = n!/n! = 1$, and the number of permutations with no fixed points is approximately $\frac{n!}{e}$.