Generating Functions	
Week 1 of 1	Lecture 4: Sieves

In previous lectures, we would often illustrate a generating-function method by opening with an example, and then discussing how it can generalize. This is often a productive way to build intuition; however, sometimes it's clearer to begin in full generality and then illustrate what we're doing by actually tackling a problem or two. Today is such a day!

Specifically, the motivating question for today's lecture on the sieve method is the following:

Question 1 Consider the following objects:

- Ω, some finite set of objects,
- P, some collection of properties that the elements of Ω may or may not have, and
- $f: \Omega \rightarrow \mathcal{P}(P)$, a function that sends any $x \in \Omega$ to the subset of P corresponding to the properties it has.

For a given r, how many objects in Ω have precisely r properties? What is the average number of properties posessed by a given element?

If the above notation is confusing, consider the following very basic example:
Example. Let

- $\Omega=\{1,2,3,4\}$,
- $P=\{$ odd, prime $\}$, and
- $f(1)=\{$ odd $\}, f(2)=\{$ prime $\}, f(3)=\{$ odd, prime $\}$, and $f(4)=\emptyset$.
. In this situation, our above question is trivial to answer: there is one element with no properties, two with one property, one with two properties, and the average number of properties possessed is 1 .

So: for many quantities, it can be much easier to count how many objects have at least r properties rather than counting how many objects have precisely r properties. To illustrate this point, consider the following example:

Example. (Stirling numbers of the second kind) For fixed n, k, let

- $\Omega=$ the collection of all k^{n} ways of putting n labeled balls into k labeled boxes, and
- $P=\left\{P_{1}, \ldots P_{k}\right\}$, where P_{i} is the property that the i-th box is empty.

From this definition, we have that the number of elements that don't satisfy any properties is just

$$
k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

as failing to satisfy any of the P_{i} means that we've put a ball into every box (i.e. created a nontrivial partition of $\{1, \ldots, n\}$, and the k ! comes from us now caring about how the boxes are labeled.

This, as we saw on class Tuesday, is nontrivial to find! However, for a fixed $S \subset P$, the number of elements of Ω that satisfy at least S is just $(k-|S|)^{n}$, which is completely trivial!

How can we use this to our advantage? In other words, how can we turn knowledge about the amount of objects possessing at least r properties into knowledge about objects possessing exactly r properties? Generating functions!

Specifically, for some fixed Ω, P, f, we do the following: Let $N(S)$ be the number of elements in Ω that satisfy all of the properties in S, and let

$$
N_{r}=\sum_{S \subset P:|S|=r} N(S) .
$$

Then, we have that

$$
\begin{aligned}
N_{r} & =\sum_{S \subset P:|S|=r} N(S) \\
& =\sum_{S \subset P:|S|=r}\left(\sum_{x \in \Omega: S \subset f(x)} 1\right) \\
& =\sum_{x \in \Omega}\left(\sum_{S \subset P:|S|=r, S \subset f(x)} 1\right) \\
& =\sum_{x \in \Omega}\binom{|f(x)|}{r}
\end{aligned}
$$

This implies that every object with exactly t properties contributes $\binom{t}{r}$ to N_{r}. So, if we let e_{t} denote the coll. of objects with exactly t properties, we have that

$$
N_{r}=\sum_{t=0}^{\infty}\binom{t}{r} e_{t}
$$

So: let $N(x)$ be the generating function for the N_{r} 's, and $E(x)$ be the generating function
for the e_{t} 's. Then, we have the following (stunning!) identity:

$$
\begin{aligned}
N(x) & =\sum_{r=0}^{\infty} N_{r} x^{r} \\
& =\sum_{r=0}^{\infty}\left(\sum_{t=0}^{\infty}\binom{t}{r} e_{t} x^{r}\right) \\
& =\sum_{t=0}^{\infty} e_{t} \cdot\left(\sum_{r=0}^{\infty}\binom{t}{r} x^{r}\right) \\
& =\sum_{t=0}^{\infty} e_{t}(1+x)^{t} \\
& =E(x+1) .
\end{aligned}
$$

So: via the toolset given to us by generating functions, we can convert back and forth between "exact" counting and "at-least" counting with absolutely no effort!

Specifically, this method - the method of "sieves" - gives us the following pair of remarkably useful answers to our earlier questions:

1. Because $E(x)=N(x-1)$, we have that e_{t} is just the coefficient of x^{t} in $N(x-1)$; i.e

$$
\begin{aligned}
e_{t} & =\left[x^{t}\right] \sum_{r=0}^{\infty} N_{r}(x-1)^{r} \\
& =\sum_{r=0}^{\infty} N_{r} \cdot\left[x^{t}\right](x-1)^{r} \\
& =\sum_{r=0}^{\infty}(-1)^{r-t}\binom{r}{t} N_{r} .
\end{aligned}
$$

So we can switch from the e_{t} 's and N_{r} 's with no difficulty whatsoever.
2. By our earlier work,

$$
\begin{aligned}
N_{r} & =\sum_{t=0}^{\infty}\binom{t}{r} e_{t} \\
\Rightarrow \quad N_{1} & =\sum_{t=0}^{\infty} t \cdot e_{t} \\
\Rightarrow \quad \frac{N_{1}}{\Omega} & =\text { the average number of properties possessed by an elt. of } \Omega .
\end{aligned}
$$

So: to illustrate the power of what we've just done, we do an example below:
Example. Of the n ! permutations of $\{1, \ldots, n\}$, how many have no fixed points \mathbb{S}^{1} ? What is the expected number of fixed points for a random permutation?

[^0]Solution. So: in our language of sets and properties, let

- $\Omega=$ the collection of all n ! permutations, and
- $P=\left\{P_{1}, \ldots P_{n}\right\}$, where P_{i} is the property that i is a fixed point.

Then, for any $S \subset P$, the number of permutations satsfying $S, N(S)$, is just the number of permutations on points not fixed by S : i.e. $(n-|S|)$!.
Consequently, we have that

$$
N_{r}=\sum_{|S|=r} N(S)=\sum_{|S|=r}(n-|S|)!=\binom{n}{r}(n-r)!=\frac{n!}{r!}
$$

if $r \leq n$, and 0 otherwise. Thus, we have

$$
\begin{aligned}
& N(x)=\sum_{r=0}^{n} \frac{n!}{r!} x^{r}=n!\cdot \sum_{r=0}^{n} \frac{x^{r}}{r!} \\
\Rightarrow \quad & E(x)=N(x-1)=n!\cdot \sum_{r=0}^{n} \frac{(x-1)^{r}}{r!} \\
\Rightarrow \quad & e_{0}=E(0)=N(-1)=n!\cdot \sum_{r=0}^{n} \frac{(-1)^{r}}{r!} \\
\Rightarrow \quad & e_{0} \approx \frac{n!}{e}
\end{aligned}
$$

So, the expected number of fixed points is just $N_{1} / n!=n!/ n!=1$, and the number of permutations with no fixed points is approximately $\frac{n!}{e}$.

[^0]: ${ }^{1}$ We say that k is a fixed point of a permutation π iff $\pi(k)=k$

