Generating Functions
 Instructor: Paddy

Lecture 2: Binomial Coefficients and Stirling Numbers

Week 1 of 1
Mathcamp 2010

Question 1 Let $f(n, k)$ denote the number of ways of picking k elements out of the set $\{1,2, \ldots n\}$. What is the generating function for $f(n, k)$ if we fix n ? How about k ? What if we fix neither? What's an explicit form for $f(n, k)$?

Answer: So: temporarily, for the purposes of this question, forget that we know that $f(n, k)=\binom{n}{k}$. How can we create a generating function for these objects?

Well: first, notice that we have the recurrence relation

$$
f(n, k)=f(n-1, k)+f(n-1, k-1) .
$$

Why is this? Well, pick some way of choosing k elements out of $\{1,2, \ldots n\}$. There are two possibilities: either we picked n, or we didn't! If we did, then ignoring the n gives us a way of picking $k-1$ elements out of a set of $n-1$ objects; if we didn't, then we simply picked k objects out of a set of $n-1$ elements. Summing over all of the ways of choosing k elements out of $\{1,2, \ldots n\}$ then gives us our desired result.

Also: notice that $f(n, 0)=1$, for all positive n, (as there's always exactly one way to not pick anything from a set), that $f(n, k)=0$ for all negative n, k (as there's no way to pick a negative number of things, or have a set with a negative number of elements,) and that $f(n, k)=0$ if $k>n$ (as there's no way to pick more than n things out of a set of n elements.)

So: look at the generating function acquired by fixing n,

$$
B_{n}(x)=\sum_{k=0}^{\infty} f(n, k) x^{k} .
$$

Applying our recurrence relation to the above, then, yields

$$
\begin{array}{rlr}
B_{n}(x) & =\sum_{k=0}^{\infty} f(n, k) x^{k} \\
& =\sum_{k=0}^{\infty}(f(n-1, k)+f(n-1, k-1)) x^{k} \\
& =\sum_{k=0}^{\infty} f(n-1, k) x^{k}+x \sum_{k=0}^{\infty} f(n-1, k-1) x^{k-1} \\
& =\sum_{k=0}^{\infty} f(n-1, k) x^{k}+\sum_{k=-1}^{\infty} f(n-1, k) x^{k} \quad \quad(\mathrm{~b} / \mathrm{c} f(-1, k)=0) \\
& =B_{n-1}(x)+x B_{n-1}(x) \\
& =(1+x) B_{n-1}(x) .
\end{array}
$$

Then, because $B_{0}(x)=1$ (shown via our boundary conditions,) we have via induction that

$$
B_{n}(x)=(1+x)^{n} .
$$

Using this, then, we can find $f(n, k)$ by extracting the coefficient of x^{k} in this power series! To do this,

- simply take k derivatives of $B_{n}(x)$ to kill off all of the terms with degree $<k$,
- evaluate the resulting power series at 0 to eliminate all of the terms with degree $>k$, and finally
- divide by k ! to cancel out the constant factor acquired by taking k derivatives of x^{k}.
(It bears noting that this process will work on any power series! As such, it's a useful trick to have up your sleeve.)

So: doing this to $B_{n}(x)$ yields the following:

$$
\begin{aligned}
\left.\frac{d^{k}}{d x^{k}}\left(B_{n}(x)\right)\right|_{0} \cdot \frac{1}{k!} & =\left.\frac{d^{k}}{d x^{k}}\left((1+x)^{n}\right)\right|_{0} \cdot \frac{1}{k!} \\
& =\left.(n)(n-1) \cdots(n-k+1) \cdot(1+x)^{n-k}\right|_{0} \cdot \frac{1}{k!} \\
& =(n)(n-1) \cdots(n-k+1) \cdot(1) \cdot \frac{1}{k!} \\
& =\frac{(n)(n-1) \cdots(n-k+1)}{k!} \\
& =\frac{n!}{k!\cdot(n-k)!}
\end{aligned}
$$

So: we've rederived the binomial coefficient! Awesome.
However: when we were deciding on a generating function to use, we chose to arbitrarily fix n and look at $f(n, k)$ as a function of k. Why not n ? Or, for that matter, why not both?

Well: one answer is that it seemed easier to deal with a fixed n, because it made our sum finite and fairly simple. However, it bears noting that we can easily do this in either way! For example, consider the multivariable generating function for $f(n, k)$ given by

$$
C(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} f(n, k) x^{k} y^{n} .
$$

What is this function?

Well: by grouping terms, we have

$$
\begin{aligned}
C(x, y) & =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} f(n, k) x^{k} y^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} f(n, k) x^{k}\right) y^{n} \\
& =\sum_{n=0}^{\infty}(1+x)^{n} y^{n} \\
& =\frac{1}{1-y(1+x)}
\end{aligned}
$$

(In general, we define a multivariable ordinary generating function for some sequence $f(n, k)$ precisely as we just did above.)

So: we can find an elegant form for the multivariable generating function for $f(n, k)$. How about the generating function

$$
A_{k}(y)=\sum_{n=0}^{\infty} f(n, k) y^{n} ?
$$

Well: re-examine $C(x, y)$. By rearranging sums, we have that

$$
\begin{aligned}
C(x, y) & =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} f(n, k) x^{k} y^{n} \\
& =\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} f(n, k) y^{n} x^{k} \\
& =\sum_{k=0}^{\infty}\left(\sum_{n=0}^{\infty} f(n, k) y^{n}\right) x^{k} \\
& =\sum_{k=0}^{\infty} A_{k}(y) x^{k} .
\end{aligned}
$$

So: the generating function $A_{k}(y)$ is just the coefficient of x^{k} in $C(x, y)$ - something we can easily find! Specifically, let the expression $\left[x^{k}\right] g(x)$ denote the coefficient of x^{k} in the
formal power series denoted by $g(x)$. Then, we have that

$$
\begin{aligned}
A_{k}(y) & =\left[x^{k}\right] \sum_{k=0}^{\infty} A_{k}(y) x^{k} \\
& =\left[x^{k}\right] \frac{1}{1-y(1+x)} \\
& =\left[x^{k}\right] \frac{1}{1-y} \frac{1}{1-\left(\frac{y}{1-y}(x)\right.} \\
& =\frac{1}{1-y}\left[x^{k}\right] \frac{1}{1-\left(\frac{y}{1-y}(x)\right.} \\
& =\frac{1}{1-y}\left[x^{k}\right] \sum_{n=0}^{\infty}\left(\frac{y}{1-y}\right)^{n} x^{n} \\
& =\frac{1}{1-y}\left(\frac{y}{1-y}\right)^{n}
\end{aligned}
$$

So:

Question 2 Similarly: let $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ denote the number of ways of partitioning the set $\{1,2, \ldots n\}$ into k nonempty pieces. What is the generating function for $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ if we fix n ? How about k ? What if we fix neither?

Answer: So, the methods we use here are almost identical to the ones we developed above.
First, we develop a recurrence relation for these numbers. Take any partition P of $\{1, \ldots n\}$ into k pieces. Then, one of two cases occur:

- $\{n\} \in P$. In this case, deleting n from our partition leaves a partition of $\{1, \ldots n-1\}$ into $k-1$ parts.
- In P, n is in a set with other elements. In this case, deleting n leaves a partition of $\{1, \ldots n-1\}$ into k pieces; furthermore, we acquire each such partition in k different ways, as n can be live in any of the k pieces of P, and deleting n in any of these k situations will always result in the same partition of $\{1, \ldots n-1\}$.

Thus, we have the recurrence relation

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}
$$

Again, as before, we have (by considering various edge cases) $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}=1,\left\{\begin{array}{l}n \\ 0\end{array}\right\}=0$, and $\left\{\begin{array}{l}n \\ k\end{array}\right\}=0$ whenever $n<0, k<0$.

We now have 3 possible generating functions to consider:

$$
\begin{array}{r}
A_{n}(y)=\sum_{k=0}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} y^{k} \\
B_{k}(x)=\sum_{n=0}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{n} \\
C(x, y)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{n} y^{k} .
\end{array}
$$

Which should we choose? Well: one strong motivation for studying $B_{k}(x)$ is that it will allow us to fix k, which should make applying our recursion much easier! We apply the recursion below:

$$
\begin{aligned}
B_{k}(x) & =\sum_{n=0}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{n} \\
& =\sum_{n=0}^{\infty}\left(\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\} x^{n}+k \sum_{n=0}^{\infty}\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\} x^{n} \\
& =x B_{k-1}(x)+k x B_{k}(x) \\
\Rightarrow \quad B_{k}(x) & =\frac{x}{1-k x} B_{k-1}(x)
\end{aligned}
$$

Again, applying $B_{0}(x)=1$, we have finally that

$$
B_{k}(x)=\frac{x^{k}}{(1-x) \cdot(1-2 x) \cdots(1-k x)}
$$

So: we have a generating function! On the HW this week, we explore how to use this to find an exact form for $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, and what happens if we try to look at some of the other generating functions for the Stirling numbers of the second kind - so attempt those problems if you're still curious!

