Generating Functions	Instructor: Paddy
	Homework 2: Multivariable Generating Functions
Week 2	Mathcamp 2010

Do as many of these questions as you want!

1. Show that the ordinary generating function for the sequence $a_{n}=\binom{2 n}{n}$ is $(1-4 x)^{-1 / 2}$.
2. Let $f(m, n)$ denote the number of increasing paths from $(0,0)$ to (m, n) along the integer lattice $\mathbb{N} \times \mathbb{N}$. Find a closed form for the ordinary generating function

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} f(n, m) x^{n} y^{m},
$$

and use this to find a closed form for $f(n, m)$.
3. Let $a_{n}=f(n, n)$. Find the ordinary generating function of the a_{n} 's.
4. We claimed, at the end of class, that

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\sum_{r=1}^{k}(-1)^{k-r} \cdot \frac{r^{n}}{r!\cdot(k-r)!} .
$$

Prove this.
5. Show that

$$
\sum_{k=0}^{\infty}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} y^{k}=\left(y+y \cdot \frac{d}{d y}\right)^{n} \circ 1
$$

where $\frac{d}{d y}$ denotes the differentiation operator. Can you get any more information from this?

