Generating Functions

Instructor: Paddy

Homework 2: Multivariable Generating Functions

Week 2

Mathcamp 2010

Do as many of these questions as you want!

- 1. Show that the ordinary generating function for the sequence $a_n = \binom{2n}{n}$ is $(1-4x)^{-1/2}$.
- 2. Let f(m,n) denote the number of increasing paths from (0,0) to (m,n) along the integer lattice $\mathbb{N} \times \mathbb{N}$. Find a closed form for the ordinary generating function

$$\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}f(n,m)x^ny^m,$$

and use this to find a closed form for f(n, m).

- 3. Let $a_n = f(n, n)$. Find the ordinary generating function of the a_n 's.
- 4. We claimed, at the end of class, that

$$\binom{n}{k} = \sum_{r=1}^{k} (-1)^{k-r} \cdot \frac{r^n}{r! \cdot (k-r)!}$$

Prove this.

5. Show that

$$\sum_{k=0}^{\infty} {n \\ k} y^{k} = \left(y + y \cdot \frac{d}{dy} \right)^{n} \circ 1,$$

where $\frac{d}{dy}$ denotes the differentiation operator. Can you get any more information from this?