Generating Functions
 Instructor: Paddy
 Homework 1: An Introduction to Generating Functions
 Week 2
 Mathcamp 2010

Do as many of these questions as you feel you need to become comfortable with the material! Especially with this first set; there's a lot of work here, but I'm not expecting anyone to do all of it.

1. Find a simple closed form for the ordinary generating functions of the following sequences:
(a) $\{n\}_{n=0}^{\infty}$
(b) $\{a n+b\}_{n=0}^{\infty}$
(c) $\left\{2^{n}\right\}_{n=0}^{\infty}$
(d) $\left\{a_{n}\right\}_{n=0}^{\infty}$, with the recurrence relation $a_{n+1}=2 a_{n}+1, a_{0}=0$.
(e) $\left\{a_{n}\right\}_{n=0}^{\infty}$, with the recurrence relation $a_{n+1}=2 a_{n}-a_{n-1}, a_{0}=0, a_{1}=1$.
2. Find a simple closed form for the exponential generating functions of the following sequences:
(a) $\{n!\}_{n=0}^{\infty}$
(b) $\left\{2^{n}\right\}_{n=0}^{\infty}$
(c) $\left\{a_{n}\right\}_{n=0}^{\infty}$, with the recurrence relation $a_{n+1}=(n-1) a_{n-1}, a_{0}=a_{1}=1$.
3. Find the coefficient of x^{n} in the power series representation of

$$
\frac{1}{\left(1-x^{3}\right)^{2}}
$$

4. Let a_{n} be the number of subsets of $[n]=\{0,1, \ldots, n\}$ that do not contain any pairs of consecutive elements.
(a) Find a recurrence relation for a_{n}.
(b) Use this to find a closed form for the ordinary generating function of $\left\{a_{n}\right\}_{n=0}^{\infty}$.
(c) Use this to find an explicit formula for a_{n}.
