
Math 8 Instructor: Padraic Bartlett

Limits and Continuity

Week 4 Caltech 2012

1 Continuity: Definitions

Definition. If f : X → Y is a function between two subsets X,Y of R, we say that

lim
x→a

f(x) = L

if and only if

1. (vague:) as x approaches a, f(x) approaches L.

2. (precise; wordy:) for any distance ε > 0, there is some neighborhood δ > 0 of a such
that whenever x ∈ X is within δ of a, f(x) is within ε of L.

3. (precise; symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ)⇒ (|f(x)− L| < ε).

Definition. A function f : X → Y is said to be continuous at some point a ∈ X iff

lim
x→a

f(x) = f(a).

Somewhat strange definitions, right? At least, the two “rigorous” definitions are some-
what strange: how do these epsilons and deltas connect with the rather simple concept of
“as x approaches a, f(x) approaches f(a)”? To see this a bit better, consider the following
image:

b

A

b+δ

A+ϵ

A-ϵ

b-δ

This graph shows pictorially what’s going on in our “rigorous” definition of limits and
continuity: essentially, to rigorously say that “as x approaches a, f(x) approaches f(a)”,
we are saying that
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• for any distance ε around f(a) that we’d like to keep our function,

• there is a neighborhood (a− δ, a+ δ) around a such that

• if f takes only values within this neighborhood (a−δ, a+δ) , it stays within ε of f(a).

Basically, what this definition says is that if you pick values of x sufficiently close to a, the
resulting f(x)’s will be as close as you want to be to f(a) – i.e. that “as x approaches a,
f(x) approaches f(a).”

This, hopefully, illustrates what our definition is trying to capture – a concrete notion
of something like convergence for functions, instead of sequences. So: how can we prove
that a function f has some given limit L? Motivated by this analogy to sequences, we have
the following blueprint for a proof-from-the-definitions that limx→a f(x) = L:

1. First, examine the quantity

|f(x)− L|.

Using algebra/cleverness, try to find a simple upper bound for this quantity of the
form

(things bounded when x is near a) · (function based on|x− a|).

Some sample candidates: things like |x−a|·(constants), or |x−a|3·(bounded functions like sin(x)).

2. Take your bounded part, and bound it! In other words, find a constant bound C > 0
and a value δ1 > 0 such that whenever x is within δ1 of a, we have

(bounded things) < C.

3. Take your function based on |x − a| and your constant C from the above step, and
starting from the equation

(function based on |x− a|) < ε

C
,

solve for |x − a| in terms of ε and C, by performing only reversible steps. This then
gives you some equation of the form

|x− a| < (thing in terms of C, ε’s).

Define δ2 to be this “thing in terms of C, ε’s.”

4. Let δ = min(δ1, δ2). Then, whenever |x− a| < δ, we have just proven that we satisfy
both the equations

(bounded things) < C, and

(function in |x− a|) < ε

C
.

If we combine these observations with the simple bound we derived in our first step,
we’ve proven that whenever |x− a| < δ, we have

|f(x)− L| < (bounded things)(|x− a| things) < C · ε
C

= ε.

But this is exactly what we wanted to prove – this is the ε− δ definiton of a limit! So
we are done.

The following example ought to illustrate what we’re talking about here:
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2 Continuity: An Example

Claim 1. The function 1
x2

is continuous at every point a 6= 0.

Proof. We want to prove that limx→a
1
x2

= 1
a2

, for any a 6= 0.
We proceed according to our blueprint:

1. First, we examine the quantity
∣∣ 1
x2
− 1

a2

∣∣:∣∣∣∣ 1

x2
− 1

a2

∣∣∣∣ =

∣∣∣∣ a2a2x2
− x2

a2x2

∣∣∣∣
=

∣∣∣∣a2 − x2a2x2

∣∣∣∣
=

∣∣∣∣(a− x)(a+ x)

a2x2

∣∣∣∣
= |a− x| ·

∣∣∣∣(a+ x)

a2x2

∣∣∣∣
= |x− a| ·

∣∣∣∣(a+ x)

a2x2

∣∣∣∣ .
By algebraic simplification, we’ve broken our expression into two parts: one of which
is |x− a|, and the other of which is bounded near x = a.

For values of x rather close to a, because a 6= 0, we can bound this as follows: pick x
such that x is within a/2 of a. Then we have∣∣∣∣(a+ x)

a2x2

∣∣∣∣ ≤ ∣∣∣∣(a+ (3a/2))

a2x2

∣∣∣∣
≤
∣∣∣∣(a+ (3a/2))

a2(a/2)2

∣∣∣∣
=

∣∣∣∣10

a3

∣∣∣∣
,

which is some nicely bounded constant. So, when we pick our δ, if we just make sure
that δ < a/2, we know that we have this quite simple and excellent upper bound∣∣∣∣(a+ x)

a2x2

∣∣∣∣ < ∣∣∣∣10

a3

∣∣∣∣ .
2. So: we have bounded the bounded part by

∣∣ 10
a3

∣∣. Now, we want to take the remaining
|x− a| part, which is exactly |x− a|, and solve the equation

|x− a| < ε

10/a3
=
a3ε

10

for |x − a|, given any arbitrary ε > 0. Conveniently, this is already done! In fact, if
we’re using our blueprint and we can make our “function in terms of |x−a|” precisely
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|x−a|, this is always this easy. Therefore, if we set δ2 = a3ε
10 , then whenever |x−a| < δ2,

we have

|x− a| < ε

10/a3
=
a3ε

10
.

3. Now, set δ = min(δ1, δ2). Then, whenever |x− a| < δ, we have

|f(x)− L| < |x− a| ·
∣∣∣∣(a+ x)

a2x2

∣∣∣∣ < 10

a3
· a

3ε

10
= ε,

which is precisely what we needed to show to satisfy the ε − δ definition of a limit.
Therefore, we have proven that limx→a

1
x2

= 1
a2

for any a 6= 0, as claimed.

3 Continuity: Three Useful Tools

Limits and continuity are wonderfully useful concepts, but working with them straight
from the definitions – as we saw above – can be somewhat ponderous. As a result, we have
developed a number of useful tools and theorems to allow us to prove that certain limits
exist without going through the definition every time: we present three such tools, and
examples for each, here.

Theorem. (Squeeze theorem:) If f, g, h are functions defined on some interval I \{a}1 such
that

f(x) ≤ g(x) ≤ h(x),∀x ∈ I \ {a},
lim
x→a

f(x) = lim
x→a

h(x),

then limx→a g(x) exists, and is equal to the other two limits limx→a f(x), limx→a h(x).

Examples.

lim
x→0

x2 sin(1/x) = 0.

Proof. So: for all x ∈ R, x 6= 0, we have that

− 1 ≤ sin(1/x) ≤ 1

⇒− x2 ≤ x2 sin(1/x) ≤ x2;

thus, by the squeeze theorem, as the limit as x→ 0 of both −x2 and x2 is 0,

lim
x→0

x2 sin(1/x) = 0

as well.
1The set X \ Y is simply the set formed by taking all of the elements in X that are not elements in Y .

The symbol \, in this context, is called “set-minus”, and denotes the idea of “taking away” one set from
another.
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Theorem. (Limits and arithmetic): if f, g are a pair of functions such that limx→a f(x),
limx→a g(x) both exist, then we have the following equalities:

lim
x→a

(αf(x) + βg(x)) = α
(

lim
x→a

f(x)
)

+ β
(

lim
x→a

g(x)
)

lim
x→a

(f(x) · g(x)) =
(

lim
x→a

f(x)
)
·
(

lim
x→a

g(x)
)

lim
x→a

(
f(x)

g(x)

)
=
(

lim
x→a

f(x)
)
/
(

lim
x→a

g(x)
)
, if lim

x→a
g(x) 6= 0.

Corollary 2. Every polynomial is continuous everywhere.

Proof. To start, we know that the functions f(x) = x and f(x) = 1 are trivially continuous.
By multiplying these functions together and scaling by constant factors, we can create any
polynomial; thus, by the above theorem, we know that any polynomial must be continuous,
as we can create it from continuous things through arithmetical operations.

Theorem. (Limits and composition): if f : Y → Z is a function such that limy→a f(x) = L,
and g : X → Y is a function such that limx→b g(x) = a, then

lim
x→b

f(g(x)) = L.

Specifically, if both functions are continuous, their composition is continuous.

Examples.

lim
x→a

sin(1/x2) = sin(1/a2),

if a 6= 0.

Proof. By our work earlier in this lecture, 1/x2 is continuous at any value of a 6= 0, and
from class sin(x) is continuous everywhere: thus, we have that their composition, sin(1/a2),
is continuous wherever x 6= 0. Thus,

lim
x→a

sin(1/x2) = sin(1/a2),

as claimed.

4 Discontinuity Proofs: A Lemma and a Blueprint

How do we show a function is discontinuous? Specifically: in our last class, we described
a “blueprint” for showing that a given function was continuous at a point. Can we do the
same for the concept of discontinuity?

As it turns out, we can! Specifically, we have the following remarkably useful lemma,
proved in Dr. Ramakrishnan’s class:

Lemma 3. For any function f : X → Y , we know that limx→a f(x) 6= L iff there is some
sequence {an}∞n=1 with the following properties:

• limn→∞ an = L, and
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• limn→∞ f(an) 6= L, and

This lemma makes proving that a function f is discontinuous at some point a remarkably
easy: all we have to do is find a sequence {an}∞n=1 that converges to a on which the values
f(an) fail to converge to f(a). Basically, it allows us to work in the world of sequences
instead of that of continuity; a change that makes a lot of our calculations easier to make.

The following example should help illustrate our method:

Claim 4. The function sin(1/x) has no defined limit at 0.

Proof. So: before we start, consider the graph of sin(1/x):

Visual inspection of this graph makes it clear that sin(1/x) cannot have a limit as x
approaches 0; but let’s rigorously prove this using our lemma, so we have an idea of how to
do this in general.

So: we know that sin
(
4k+1
2 π

)
= 1, for any k. Consequently, because the sequence{

2
(4k+1)π

}∞
k=1

satisfies the properties

• limk→∞
2

(4k+1)π = 0 and

• limk→∞ sin
(

1
2/(4k+1)π

)
= limk→∞ sin

(
4k+1
2 π

)
= limk→∞ 1 = 1,

our lemma says that if sin(1/x) has a limit at 0, it must be 1.
However: we also know that sin

(
4k+3
2 π

)
= −1, for any k. Consequently, because the

sequence
{

2
(4k+3)π

}∞
k=1

satisfies the properties

• limk→∞
2

(4k+3)π = 0 and

• limk→∞ sin
(

1
2/(4k+3)π

)
= limk→∞ sin

(
4k+3
2 π

)
= limk→∞−1 = −1,

our lemma also says that if sin(1/x) has a limit at 0, it must be −1. Thus, because −1 6= 1,
we have that the limit limx→0 sin(1/x) cannot exist, as claimed.
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5 One-Sided Limits

Let’s conclude with something fairly elementary: the concept of a one-sided limit.

Definition. For a function f : X → Y , we say that

lim
x→a+

f(x) = L

if and only if

1. (vague:) as x goes to a from the right-hand-side, f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x > a)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→a−

f(x) = L

if and only if

1. (vague:) as x goes to a from the left-hand-side, f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x < a)⇒ (|f(x)− L| < ε).

Basically, this is just our original definition of a limit except we’re only looking at
x-values on one side of the limit point a: hence the name “one-sided limit.” Thus, our
methods for calculating these limits are pretty much identical to the methods we introduced
on Monday: we work one example below, just to reinforce what we’re doing here.

Claim 5.

lim
x→0+

|x|
x

= 1.

Proof. First, examine the quantity

|x|
x
.

For x > 0, we have that

|x|
x

= 1;

therefore, for any ε > 0, it doesn’t even matter what δ we pick! – because for any x with
0 < x, we have that ∣∣∣∣ |x|x − 1

∣∣∣∣ = 0 < ε.

Thus, the limit as |x|x approaches 0 from the right hand side is 1, as claimed.

One-sided limits are particularly useful when we’re discussing limits at infinity, as we
describe in the next section:
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6 Limits at Infinity

Definition. For a function f : X → Y , we say that

lim
x→+∞

f(x) = L

if and only if

1. (vague:) as x goes to “infinity,” f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0,∃N s.t. ∀x ∈ X, (x > N)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→−∞

f(x) = L

if and only if

1. (vague:) as x goes to “negative infinity,” f(x) goes to L.

2. (concrete, symbols:)

∀ε > 0, ∃N s.t. ∀x ∈ X, (x < N)⇒ (|f(x)− L| < ε).

In class, we described a rather useful trick for calculating limits at infinity:

Proposition. For any function f : X → Y ,

lim
x→+∞

f(x) = lim
x→0+

f

(
1

x

)
.

Similarly,

lim
x→−∞

f(x) = lim
x→0−

f

(
1

x

)
.

The use of this theorem is that it translates limits at infinity (which can be somewhat
complex to examine) into limits at 0, which can be in some sense a lot easier to deal with:
as opposed to worrying about what a function does at extremely large values, we can just
consider what a different function does at rather small values (which can make our lives
often a lot easier.)

Here’s an example, to illustrate where this comes in handy:

Claim 6.

lim
x→+∞

3x2 + cos(34x) + 107 · x
2x2 + 1

=
3

2
.
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Proof. Motivated by our proposition above, let us subsitute 1/x for x, so that we have

lim
x→+∞

3x2 + cos(34x) + 107 · x
2x2 + 1

= lim
x→0+

3(1/x)2 + cos(34/x) + 107 · (1/x)

2(1/x)2 + 1
.

Multiplying both top and bottom by x2, this limit is equal to

lim
x→0+

3 + x2 cos(34/x) + 107 · x
2 + x2

.

Because limits play nicely with arithmetic, we know that the limit of this ratio is the ratio
of the two limits 3 + x2 cos(34/x) + 107 · x and 2 + x2, if and only iff both limits exist.

But that’s simple to see: because 2 + x2 is a polynomial, it’s continuous, and thus

lim
x→0+

2 + x2 = 2 + 02 = 2.

As well, because

3− x2 + 1−7 ·x ≤ 3 + x2 cos(34/x) + 107 · x ≤ 3 + x2 + 1−7 ·x,

and both of those polynomials converge to 3 as x→ 0+, the squeeze theorem tells us that

lim
x→0+

3 + x2 cos(34/x) + 107 · x = 3

as well.
Thus, because both limits exist, we have that

lim
x→0+

3 + x2 cos(34/x) + 107 · x
2 + x2

=
limx→0+(3 + x2 cos(34/x) + 107 · x)

limx→0+(2 + x2)
=

3

2
,

as claimed.

One useful application of limits at infinity comes through studying the intermediate
value theorem, which is the subject of our next section:

7 The Intermediate Value Theorem

Theorem. If f is a continuous function on [a, b], then f takes on every value between f(a)
and f(b) at least once.

Most uses of this theorem occur when we have a continuous function f that takes on both
positive and negative values on some interval; in this case, the intermediate value theorem
tells us that this function must have a zero between each pair of sign changes. Basically,
when you have a question that’s asking you to find zeroes of a function, or to show that a
function with prescribed endpoint behavior takes on some other values, the IVT is the way
to go.

To illustrate this, consider the following example:

Claim 7. If p(x) is an odd-degree polynomial, it has a root in R – i.e. there is some x ∈ R
such that p(x) = 0.
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Proof. Write

p(x) = a0 + a1x+ . . .+ anx
n,

where n is an odd natural number and an > 0. (The case where an < 0 is identical to the
proof we’re about to do if you flip all of the inequalities, so we omit it here by symmetry.)

Then, notice that

lim
x→+∞

a0 + . . .+ anx
n

xn
= lim

x→+∞

( a0
xn

+
a1
xn−1

+ . . .+
an−1
x

+ an

)
= lim

x→+∞

( a0
xn

)
+ lim
x→+∞

( a1
xn−1

)
+ . . .+ lim

x→+∞
(an)

= 0 + . . .+ 0 + an

= an,

(where the second line is justified because all of the individual limits exist.)
As a result, we know that for large positive values of x, a0+...+anxn

xn is as close to an as
we would like. Specifically, we know that for large values of x, we have that the distance
between a0+...+anxn

xn and an is less than, say, an/2. As a consequence, we have specifically

that a0+...+anxn

xn is positive, for large positive values of x – thus, for some large positive x,
we have that

xn · a0 + . . .+ anx
n

xn
= (positive) · (positive) = (positive).

Similarly, because

lim
x→−∞

a0 + . . .+ anx
n

xn
= lim

x→−∞

( a0
xn

+
a1
xn−1

+ . . .+
an−1
x

+ an

)
= lim

x→−∞

( a0
xn

)
+ lim
x→−∞

( a1
xn−1

)
+ . . .+ lim

x→−∞
(an)

= 0 + . . .+ 0 + an

= an,

we also have that for large negative values of x, a0+...+anxn

xn is as close to an as we’d like,

and thus that a0+...+anxn

xn is positive, for large negative values of x. Thus, for some large
negative value of x, we have that

xn · a0 + . . .+ anx
n

xn
= (negative) · (positive) = (negative).

(Notice that the fact that n was odd was used in the above calculation, to insure that x
negative implies that xn is negative.)

We have thus shown that our polynomial adopts at least one positive and one negative
value: thus, by the intermediate value theorem, it must be 0 somewhere between these two
values! Thus, our polynomial has a root, as claimed.
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8 Open, Closed, and Bounded Sets

Finally, we make something of a detour here, to quickly define open, closed, and bounded
sets:

Definition. A set X ⊂ R is called open if for any x ∈ X, there is some neighborhood δx
of x such that the entire interval (x− δx, x+ δx) lies in X.

Examples.

• The sets R and ∅ are both trivially open sets.

• Any open interval (a, b) is an open set.

• The union2 of arbitrarily many open sets is open.

• The intersection 3 of finitely many open sets is open.

Definition. A set X ⊂ R is called closed if its complement4 is open.

Examples.

• The sets R and ∅ are both trivially closed sets. Note that this means that some sets
can be both open and closed!

• Any closed interval [a, b] is an closed set.

• The intersection of arbitarily many closed sets is closed.

• The union of finitely many closed sets is closed.

Definition. A set X ⊂ R is bounded iff there is some valueM ∈ R such that−M ≤ x ≤M ,
for any x ∈ X.

We will work more closely with these definitions in future lectures: however, for now,
it suffices to note the following useful theorem, which we’ll use heavily in our discussion of
the derivative:

Theorem. (Extremal value theorem:) If f : X → Y is a continuous function, and X is a
closed and bounded subset X of R, then f attains its minima and maxima. In other words,
there are values m,M ∈ X such that for any x ∈ X, f(m) ≤ f(x) ≤ f(M).

2The union X ∪ Y of two sets X,Y is the set {a : a ∈ X or a ∈ Y, or both.}
3The intersection X ∩ Y of two sets X,Y is the set {a : a ∈ X and a ∈ Y.}
4The complement Xc of a set X is the set {a : a /∈ X}
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