| Math 8 |
| :--- | :--- |
| Week 4 |
| 1 Limits |
| 1 Continuity: Definitions |

Definition. If $f: X \rightarrow Y$ is a function between two subsets X, Y of \mathbb{R}, we say that

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if

1. (vague:) as x approaches $a, f(x)$ approaches L.
2. (precise; wordy:) for any distance $\epsilon>0$, there is some neighborhood $\delta>0$ of a such that whenever $x \in X$ is within δ of $a, f(x)$ is within ϵ of L.
3. (precise; symbols:)

$$
\forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x \in X,(|x-a|<\delta) \Rightarrow(|f(x)-L|<\epsilon) .
$$

Definition. A function $f: X \rightarrow Y$ is said to be continuous at some point $a \in X$ iff

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Somewhat strange definitions, right? At least, the two "rigorous" definitions are somewhat strange: how do these epsilons and deltas connect with the rather simple concept of "as x approaches $a, f(x)$ approaches $f(a)$ "? To see this a bit better, consider the following image:

This graph shows pictorially what's going on in our "rigorous" definition of limits and continuity: essentially, to rigorously say that "as x approaches $a, f(x)$ approaches $f(a)$ ", we are saying that

- for any distance ϵ around $f(a)$ that we'd like to keep our function,
- there is a neighborhood $(a-\delta, a+\delta)$ around a such that
- if f takes only values within this neighborhood $(a-\delta, a+\delta)$, it stays within ϵ of $f(a)$.

Basically, what this definition says is that if you pick values of x sufficiently close to a, the resulting $f(x)$'s will be as close as you want to be to $f(a)$ - i.e. that "as x approaches a, $f(x)$ approaches $f(a)$."

This, hopefully, illustrates what our definition is trying to capture - a concrete notion of something like convergence for functions, instead of sequences. So: how can we prove that a function f has some given limit L ? Motivated by this analogy to sequences, we have the following blueprint for a proof-from-the-definitions that $\lim _{x \rightarrow a} f(x)=L$:

1. First, examine the quantity

$$
|f(x)-L| .
$$

Using algebra/cleverness, try to find a simple upper bound for this quantity of the form
(things bounded when x is near $a) \cdot($ function based on $|x-a|)$.
Some sample candidates: things like $|x-a| \cdot$ (constants), or $|x-a|^{3}$. (bounded functions like $\sin (x)$).
2. Take your bounded part, and bound it! In other words, find a constant bound $C>0$ and a value $\delta_{1}>0$ such that whenever x is within δ_{1} of a, we have
(bounded things) $<C$.
3. Take your function based on $|x-a|$ and your constant C from the above step, and starting from the equation

$$
(\text { function based on }|x-a|)<\frac{\epsilon}{C}
$$

solve for $|x-a|$ in terms of ϵ and C, by performing only reversible steps. This then gives you some equation of the form

$$
|x-a|<\left(\text { thing in terms of } C, \epsilon^{\prime} s\right) .
$$

Define δ_{2} to be this "thing in terms of C, ϵ 's."
4. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Then, whenever $|x-a|<\delta$, we have just proven that we satisfy both the equations

$$
\begin{aligned}
& \text { (bounded things) }<C, \quad \text { and } \\
& (\text { function in }|x-a|)<\frac{\epsilon}{C} \text {. }
\end{aligned}
$$

If we combine these observations with the simple bound we derived in our first step, we've proven that whenever $|x-a|<\delta$, we have

$$
|f(x)-L|<(\text { bounded things })(|x-a| \text { things })<C \cdot \frac{\epsilon}{C}=\epsilon
$$

But this is exactly what we wanted to prove - this is the $\epsilon-\delta$ definiton of a limit! So we are done.

The following example ought to illustrate what we're talking about here:

2 Continuity: An Example

Claim 1. The function $\frac{1}{x^{2}}$ is continuous at every point $a \neq 0$.
Proof. We want to prove that $\lim _{x \rightarrow a} \frac{1}{x^{2}}=\frac{1}{a^{2}}$, for any $a \neq 0$.
We proceed according to our blueprint:

1. First, we examine the quantity $\left|\frac{1}{x^{2}}-\frac{1}{a^{2}}\right|$:

$$
\begin{aligned}
\left|\frac{1}{x^{2}}-\frac{1}{a^{2}}\right| & =\left|\frac{a^{2}}{a^{2} x^{2}}-\frac{x^{2}}{a^{2} x^{2}}\right| \\
& =\left|\frac{a^{2}-x^{2}}{a^{2} x^{2}}\right| \\
& =\left|\frac{(a-x)(a+x)}{a^{2} x^{2}}\right| \\
& =|a-x| \cdot\left|\frac{(a+x)}{a^{2} x^{2}}\right| \\
& =|x-a| \cdot\left|\frac{(a+x)}{a^{2} x^{2}}\right| .
\end{aligned}
$$

By algebraic simplification, we've broken our expression into two parts: one of which is $|x-a|$, and the other of which is bounded near $x=a$.
For values of x rather close to a, because $a \neq 0$, we can bound this as follows: pick x such that x is within $a / 2$ of a. Then we have

$$
\begin{aligned}
\left|\frac{(a+x)}{a^{2} x^{2}}\right| & \leq\left|\frac{(a+(3 a / 2))}{a^{2} x^{2}}\right| \\
& \leq\left|\frac{(a+(3 a / 2))}{a^{2}(a / 2)^{2}}\right| \\
& =\left|\frac{10}{a^{3}}\right|
\end{aligned}
$$

which is some nicely bounded constant. So, when we pick our δ, if we just make sure that $\delta<a / 2$, we know that we have this quite simple and excellent upper bound

$$
\left|\frac{(a+x)}{a^{2} x^{2}}\right|<\left|\frac{10}{a^{3}}\right| .
$$

2. So: we have bounded the bounded part by $\left|\frac{10}{a^{3}}\right|$. Now, we want to take the remaining $|x-a|$ part, which is exactly $|x-a|$, and solve the equation

$$
|x-a|<\frac{\epsilon}{10 / a^{3}}=\frac{a^{3} \epsilon}{10}
$$

for $|x-a|$, given any arbitrary $\epsilon>0$. Conveniently, this is already done! In fact, if we're using our blueprint and we can make our "function in terms of $|x-a|$ " precisely
$|x-a|$, this is always this easy. Therefore, if we set $\delta_{2}=\frac{a^{3} \epsilon}{10}$, then whenever $|x-a|<\delta_{2}$, we have

$$
|x-a|<\frac{\epsilon}{10 / a^{3}}=\frac{a^{3} \epsilon}{10} .
$$

3. Now, set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Then, whenever $|x-a|<\delta$, we have

$$
|f(x)-L|<|x-a| \cdot\left|\frac{(a+x)}{a^{2} x^{2}}\right|<\frac{10}{a^{3}} \cdot \frac{a^{3} \epsilon}{10}=\epsilon,
$$

which is precisely what we needed to show to satisfy the $\epsilon-\delta$ definition of a limit. Therefore, we have proven that $\lim _{x \rightarrow a} \frac{1}{x^{2}}=\frac{1}{a^{2}}$ for any $a \neq 0$, as claimed.

3 Continuity: Three Useful Tools

Limits and continuity are wonderfully useful concepts, but working with them straight from the definitions - as we saw above - can be somewhat ponderous. As a result, we have developed a number of useful tools and theorems to allow us to prove that certain limits exist without going through the definition every time: we present three such tools, and examples for each, here.

Theorem. (Squeeze theorem:) If f, g, h are functions defined on some interval $I \backslash\{a\}^{1}$ such that

$$
\begin{aligned}
& f(x) \leq g(x) \leq h(x), \forall x \in I \backslash\{a\}, \\
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)
\end{aligned}
$$

then $\lim _{x \rightarrow a} g(x)$ exists, and is equal to the other two limits $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a} h(x)$.

Examples.

$$
\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0
$$

Proof. So: for all $x \in \mathbb{R}, x \neq 0$, we have that

$$
\begin{gathered}
-1 \leq \sin (1 / x) \leq 1 \\
\Rightarrow-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2} ;
\end{gathered}
$$

thus, by the squeeze theorem, as the limit as $x \rightarrow 0$ of both $-x^{2}$ and x^{2} is 0,

$$
\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0
$$

as well.

[^0]Theorem. (Limits and arithmetic): if f, g are a pair of functions such that $\lim _{x \rightarrow a} f(x)$, $\lim _{x \rightarrow a} g(x)$ both exist, then we have the following equalities:

$$
\begin{aligned}
\lim _{x \rightarrow a}(\alpha f(x)+\beta g(x)) & =\alpha\left(\lim _{x \rightarrow a} f(x)\right)+\beta\left(\lim _{x \rightarrow a} g(x)\right) \\
\lim _{x \rightarrow a}(f(x) \cdot g(x)) & =\left(\lim _{x \rightarrow a} f(x)\right) \cdot\left(\lim _{x \rightarrow a} g(x)\right) \\
\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right) & =\left(\lim _{x \rightarrow a} f(x)\right) /\left(\lim _{x \rightarrow a} g(x)\right), \text { if } \lim _{x \rightarrow a} g(x) \neq 0 .
\end{aligned}
$$

Corollary 2. Every polynomial is continuous everywhere.
Proof. To start, we know that the functions $f(x)=x$ and $f(x)=1$ are trivially continuous. By multiplying these functions together and scaling by constant factors, we can create any polynomial; thus, by the above theorem, we know that any polynomial must be continuous, as we can create it from continuous things through arithmetical operations.

Theorem. (Limits and composition): if $f: Y \rightarrow Z$ is a function such that $\lim _{y \rightarrow a} f(x)=L$, and $g: X \rightarrow Y$ is a function such that $\lim _{x \rightarrow b} g(x)=a$, then

$$
\lim _{x \rightarrow b} f(g(x))=L
$$

Specifically, if both functions are continuous, their composition is continuous.

Examples.

$$
\lim _{x \rightarrow a} \sin \left(1 / x^{2}\right)=\sin \left(1 / a^{2}\right)
$$

if $a \neq 0$.
Proof. By our work earlier in this lecture, $1 / x^{2}$ is continuous at any value of $a \neq 0$, and from class $\sin (x)$ is continuous everywhere: thus, we have that their composition, $\sin \left(1 / a^{2}\right)$, is continuous wherever $x \neq 0$. Thus,

$$
\lim _{x \rightarrow a} \sin \left(1 / x^{2}\right)=\sin \left(1 / a^{2}\right)
$$

as claimed.

4 Discontinuity Proofs: A Lemma and a Blueprint

How do we show a function is discontinuous? Specifically: in our last class, we described a "blueprint" for showing that a given function was continuous at a point. Can we do the same for the concept of discontinuity?

As it turns out, we can! Specifically, we have the following remarkably useful lemma, proved in Dr. Ramakrishnan's class:

Lemma 3. For any function $f: X \rightarrow Y$, we know that $\lim _{x \rightarrow a} f(x) \neq L$ iff there is some sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ with the following properties:

- $\lim _{n \rightarrow \infty} a_{n}=L$, and
- $\lim _{n \rightarrow \infty} f\left(a_{n}\right) \neq L$, and

This lemma makes proving that a function f is discontinuous at some point a remarkably easy: all we have to do is find a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ that converges to a on which the values $f\left(a_{n}\right)$ fail to converge to $f(a)$. Basically, it allows us to work in the world of sequences instead of that of continuity; a change that makes a lot of our calculations easier to make.

The following example should help illustrate our method:
Claim 4. The function $\sin (1 / x)$ has no defined limit at 0 .
Proof. So: before we start, consider the graph of $\sin (1 / x)$:

Visual inspection of this graph makes it clear that $\sin (1 / x)$ cannot have a limit as x approaches 0 ; but let's rigorously prove this using our lemma, so we have an idea of how to do this in general.

So: we know that $\sin \left(\frac{4 k+1}{2} \pi\right)=1$, for any k. Consequently, because the sequence $\left\{\frac{2}{(4 k+1) \pi}\right\}_{k=1}^{\infty}$ satisfies the properties

- $\lim _{k \rightarrow \infty} \frac{2}{(4 k+1) \pi}=0$ and
- $\lim _{k \rightarrow \infty} \sin \left(\frac{1}{2 /(4 k+1) \pi}\right)=\lim _{k \rightarrow \infty} \sin \left(\frac{4 k+1}{2} \pi\right)=\lim _{k \rightarrow \infty} 1=1$,
our lemma says that if $\sin (1 / x)$ has a limit at 0 , it must be 1 .
However: we also know that $\sin \left(\frac{4 k+3}{2} \pi\right)=-1$, for any k. Consequently, because the sequence $\left\{\frac{2}{(4 k+3) \pi}\right\}_{k=1}^{\infty}$ satisfies the properties
- $\lim _{k \rightarrow \infty} \frac{2}{(4 k+3) \pi}=0$ and
- $\lim _{k \rightarrow \infty} \sin \left(\frac{1}{2 /(4 k+3) \pi}\right)=\lim _{k \rightarrow \infty} \sin \left(\frac{4 k+3}{2} \pi\right)=\lim _{k \rightarrow \infty}-1=-1$,
our lemma also says that if $\sin (1 / x)$ has a limit at 0 , it must be -1 . Thus, because $-1 \neq 1$, we have that the limit $\lim _{x \rightarrow 0} \sin (1 / x)$ cannot exist, as claimed.

5 One-Sided Limits

Let's conclude with something fairly elementary: the concept of a one-sided limit.
Definition. For a function $f: X \rightarrow Y$, we say that

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if and only if

1. (vague:) as x goes to a from the right-hand-side, $f(x)$ goes to L.
2. (concrete, symbols:)

$$
\forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x \in X,(|x-a|<\delta \text { and } x>a) \Rightarrow(|f(x)-L|<\epsilon) .
$$

Similarly, we say that

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if and only if

1. (vague:) as x goes to a from the left-hand-side, $f(x)$ goes to L.
2. (concrete, symbols:)

$$
\forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x \in X,(|x-a|<\delta \text { and } x<a) \Rightarrow(|f(x)-L|<\epsilon) .
$$

Basically, this is just our original definition of a limit except we're only looking at x-values on one side of the limit point a : hence the name "one-sided limit." Thus, our methods for calculating these limits are pretty much identical to the methods we introduced on Monday: we work one example below, just to reinforce what we're doing here.

Claim 5.

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1
$$

Proof. First, examine the quantity

$$
\frac{|x|}{x} .
$$

For $x>0$, we have that

$$
\frac{|x|}{x}=1 ;
$$

therefore, for any $\epsilon>0$, it doesn't even matter what δ we pick! - because for any x with $0<x$, we have that

$$
\left|\frac{|x|}{x}-1\right|=0<\epsilon .
$$

Thus, the limit as $\frac{|x|}{x}$ approaches 0 from the right hand side is 1 , as claimed.
One-sided limits are particularly useful when we're discussing limits at infinity, as we describe in the next section:

6 Limits at Infinity

Definition. For a function $f: X \rightarrow Y$, we say that

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

if and only if

1. (vague:) as x goes to "infinity," $f(x)$ goes to L.
2. (concrete, symbols:)

$$
\forall \epsilon>0, \exists N \text { s.t. } \forall x \in X,(x>N) \Rightarrow(|f(x)-L|<\epsilon) .
$$

Similarly, we say that

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if and only if

1. (vague:) as x goes to "negative infinity," $f(x)$ goes to L.
2. (concrete, symbols:)

$$
\forall \epsilon>0, \exists N \text { s.t. } \forall x \in X,(x<N) \Rightarrow(|f(x)-L|<\epsilon) .
$$

In class, we described a rather useful trick for calculating limits at infinity:
Proposition. For any function $f: X \rightarrow Y$,

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow 0^{+}} f\left(\frac{1}{x}\right) .
$$

Similarly,

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow 0^{-}} f\left(\frac{1}{x}\right) .
$$

The use of this theorem is that it translates limits at infinity (which can be somewhat complex to examine) into limits at 0 , which can be in some sense a lot easier to deal with: as opposed to worrying about what a function does at extremely large values, we can just consider what a different function does at rather small values (which can make our lives often a lot easier.)

Here's an example, to illustrate where this comes in handy:

Claim 6.

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}+\cos (34 x)+10^{7} \cdot x}{2 x^{2}+1}=\frac{3}{2} .
$$

Proof. Motivated by our proposition above, let us subsitute $1 / x$ for x, so that we have

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}+\cos (34 x)+10^{7} \cdot x}{2 x^{2}+1}=\lim _{x \rightarrow 0^{+}} \frac{3(1 / x)^{2}+\cos (34 / x)+10^{7} \cdot(1 / x)}{2(1 / x)^{2}+1} .
$$

Multiplying both top and bottom by x^{2}, this limit is equal to

$$
\lim _{x \rightarrow 0^{+}} \frac{3+x^{2} \cos (34 / x)+10^{7} \cdot x}{2+x^{2}} .
$$

Because limits play nicely with arithmetic, we know that the limit of this ratio is the ratio of the two limits $3+x^{2} \cos (34 / x)+10^{7} \cdot x$ and $2+x^{2}$, if and only iff both limits exist.

But that's simple to see: because $2+x^{2}$ is a polynomial, it's continuous, and thus

$$
\lim _{x \rightarrow 0^{+}} 2+x^{2}=2+0^{2}=2 .
$$

As well, because

$$
3-x^{2}+1-{ }^{7} \cdot x \leq 3+x^{2} \cos (34 / x)+10^{7} \cdot x \leq 3+x^{2}+1-^{7} \cdot x
$$

and both of those polynomials converge to 3 as $x \rightarrow 0^{+}$, the squeeze theorem tells us that

$$
\lim _{x \rightarrow 0^{+}} 3+x^{2} \cos (34 / x)+10^{7} \cdot x=3
$$

as well.
Thus, because both limits exist, we have that

$$
\lim _{x \rightarrow 0^{+}} \frac{3+x^{2} \cos (34 / x)+10^{7} \cdot x}{2+x^{2}}=\frac{\lim _{x \rightarrow 0^{+}}\left(3+x^{2} \cos (34 / x)+10^{7} \cdot x\right)}{\lim _{x \rightarrow 0^{+}}\left(2+x^{2}\right)}=\frac{3}{2},
$$

as claimed.
One useful application of limits at infinity comes through studying the intermediate value theorem, which is the subject of our next section:

7 The Intermediate Value Theorem

Theorem. If f is a continuous function on $[a, b]$, then f takes on every value between $f(a)$ and $f(b)$ at least once.

Most uses of this theorem occur when we have a continuous function f that takes on both positive and negative values on some interval; in this case, the intermediate value theorem tells us that this function must have a zero between each pair of sign changes. Basically, when you have a question that's asking you to find zeroes of a function, or to show that a function with prescribed endpoint behavior takes on some other values, the IVT is the way to go.

To illustrate this, consider the following example:
Claim 7. If $p(x)$ is an odd-degree polynomial, it has a root in \mathbb{R} - i.e. there is some $x \in \mathbb{R}$ such that $p(x)=0$.

Proof. Write

$$
p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

where n is an odd natural number and $a_{n}>0$. (The case where $a_{n}<0$ is identical to the proof we're about to do if you flip all of the inequalities, so we omit it here by symmetry.)

Then, notice that

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}} & =\lim _{x \rightarrow+\infty}\left(\frac{a_{0}}{x^{n}}+\frac{a_{1}}{x^{n-1}}+\ldots+\frac{a_{n-1}}{x}+a_{n}\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{a_{0}}{x^{n}}\right)+\lim _{x \rightarrow+\infty}\left(\frac{a_{1}}{x^{n-1}}\right)+\ldots+\lim _{x \rightarrow+\infty}\left(a_{n}\right) \\
& =0+\ldots+0+a_{n} \\
& =a_{n},
\end{aligned}
$$

(where the second line is justified because all of the individual limits exist.)
As a result, we know that for large positive values of $x, \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is as close to a_{n} as we would like. Specifically, we know that for large values of x, we have that the distance between $\frac{a_{0}+\ldots+a_{n} x^{n}}{x_{n}^{n}}$ and a_{n} is less than, say, $a_{n} / 2$. As a consequence, we have specifically that $\frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is positive, for large positive values of x - thus, for some large positive x, we have that

$$
x^{n} \cdot \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}=(\text { positive }) \cdot(\text { positive })=(\text { positive }) .
$$

Similarly, because

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}} & =\lim _{x \rightarrow-\infty}\left(\frac{a_{0}}{x^{n}}+\frac{a_{1}}{x^{n-1}}+\ldots+\frac{a_{n-1}}{x}+a_{n}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{a_{0}}{x^{n}}\right)+\lim _{x \rightarrow-\infty}\left(\frac{a_{1}}{x^{n-1}}\right)+\ldots+\lim _{x \rightarrow-\infty}\left(a_{n}\right) \\
& =0+\ldots+0+a_{n} \\
& =a_{n},
\end{aligned}
$$

we also have that for large negative values of $x, \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is as close to a_{n} as we'd like, and thus that $\frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is positive, for large negative values of x. Thus, for some large negative value of x, we have that

$$
x^{n} \cdot \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}=(\text { negative }) \cdot(\text { positive })=(\text { negative }) .
$$

(Notice that the fact that n was odd was used in the above calculation, to insure that x negative implies that x^{n} is negative.)

We have thus shown that our polynomial adopts at least one positive and one negative value: thus, by the intermediate value theorem, it must be 0 somewhere between these two values! Thus, our polynomial has a root, as claimed.

8 Open, Closed, and Bounded Sets

Finally, we make something of a detour here, to quickly define open, closed, and bounded sets:

Definition. A set $X \subset \mathbb{R}$ is called open if for any $x \in X$, there is some neighborhood δ_{x} of x such that the entire interval $\left(x-\delta_{x}, x+\delta_{x}\right)$ lies in X.

Examples.

- The sets \mathbb{R} and \emptyset are both trivially open sets.
- Any open interval (a, b) is an open set.
- The union ${ }^{2}$ of arbitrarily many open sets is open.
- The intersection ${ }^{3}$ of finitely many open sets is open.

Definition. A set $X \subset \mathbb{R}$ is called closed if its complement ${ }^{4}$ is open.

Examples.

- The sets \mathbb{R} and \emptyset are both trivially closed sets. Note that this means that some sets can be both open and closed!
- Any closed interval $[a, b]$ is an closed set.
- The intersection of arbitarily many closed sets is closed.
- The union of finitely many closed sets is closed.

Definition. A set $X \subset \mathbb{R}$ is bounded iff there is some value $M \in \mathbb{R}$ such that $-M \leq x \leq M$, for any $x \in X$.

We will work more closely with these definitions in future lectures: however, for now, it suffices to note the following useful theorem, which we'll use heavily in our discussion of the derivative:

Theorem. (Extremal value theorem:) If $f: X \rightarrow Y$ is a continuous function, and X is a closed and bounded subset X of \mathbb{R}, then f attains its minima and maxima. In other words, there are values $m, M \in X$ such that for any $x \in X, f(m) \leq f(x) \leq f(M)$.

[^1]
[^0]: ${ }^{1}$ The set $X \backslash Y$ is simply the set formed by taking all of the elements in X that are not elements in Y. The symbol \backslash, in this context, is called "set-minus", and denotes the idea of "taking away" one set from another.

[^1]: ${ }^{2}$ The union $X \cup Y$ of two sets X, Y is the set $\{a: a \in X$ or $a \in Y$, or both. $\}$
 ${ }^{3}$ The intersection $X \cap Y$ of two sets X, Y is the set $\{a: a \in X$ and $a \in Y$. $\}$
 ${ }^{4}$ The complement X^{c} of a set X is the set $\{a: a \notin X\}$

