Math & Instructor: Padraic Bartlett

Practice Final: Solutions
Week 10 Caltech 2012

1. Determine whether the following series converge:
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= 1
nZ::l (In(n))*)”

Solution. First, notice that because In(n) is a positive and monotonically in-
creasing function on [1, 00), the function W is a positive and monotonically
decreasing function on [1,00). Therefore, by the integral test, we know that our

series converges if and only if the improper integral
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exists and is finite. We evaluate this integral via the u-substitution v = In(z) =
r=ce" du= %dm = dx = e"du:
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Notice that lim, Z—: = 00; you can see this by applying L’Hopital’s theorem
k times, at which point the limit will become lim, s % (This is justified
because at every step up to k, the top was e* and the bottom was a nonconstant
polynomial.) Therefore, because the function we're integrating goes off to infinity
as u — 00, its integral on [0, co] must diverge to infinity as well.
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Solution. We use a similar argument to (a.) Again, because In(n) is a positive
and monotonically increasing function on [1, 00), the function W is a positive
and monotonically decreasing function on [1,00). Therefore, by the integral test,
we know that our series converges if and only if the improper integral



exists and is finite. We evaluate this integral via the same u-substitution v =
In(z) = z = €*, du = 2dz = dx = e"du as before:
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We want to know whether this integral is finite or not. By itself, we don’t know:
it looks hard to directly integrate! However, there are simpler upper bounds
for the function we're integrating that are easier to deal with: so let’s do that
instead.

Notice that for u > 3, we have that u — e"In(u) < —u. This is because it’s true
at u = 3 (because 3 — e3In(3) ~ —18.6 < —3) and the derivative of u — e* In(u),
1-— % — e"In(u), is less than 1 — e"In(u), which is less than 1 — e" for u > 3,
which is less than —1, the derivative of —u, again for u > 3. Therefore, for u > 3,
we have u — e*In(u) < u — e < —u; so we’ve shown that

eu—e In(u) < e,

So: how can we relate the integral of e~ to the integral of e*~¢"™(%)? Easy: use
the integral test again!
In particular, notice that the series > ; e™" converges by the ratio test (limy, oo et

e—'fl
% < 1). Therefore, by the comparison test, the series
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must also converge.
But as we showed above, the derivative of u — €“In(u) is < —1 for u > 3, so
ev—¢"In(v) j5 a monotonically decreasing function for v > 3, and is therefore
an eventually monotonically decreasing function. Therefore, because the series
> en—¢" (") converges, the corresponding integral
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converges, by our second application of the integral test. But this means that
our original series
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also converges, by our first application of the integral test!
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Solution. We proceed by the comparison test. The idea is the following: we
know that sin(z) < z, for any positive value of z. (To see why: it’s true at z = 0.
As well, the derivative of x is 1, which is always greater than the derivative of
sin(x), which is cos(z). Therefore, going forward, we have sin(z) < z, for all
positive z.) We seek to apply the comparison test here. We can do so because
sin(1/n) is always positive (because sin(x) is positive on [0, 7]). If we compare
sin(1/n) to 1/n, we have that the series in (c) converges if the series
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converges. We’ve proven in class that this series converges; therefore, our original
series also converges.

2. Evaluate the improper integral
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Solution. Try the u-substitution u = v22 — 1 = 2 = Vvu2 + 1. If you do this, you

get that du = \/xgi_ldx = \/ugﬁdu = dx, and therefore that our original integral is
limg— o0 VaZ—1 1 u |
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Now, you should try a trig substitution! In particular, try v = tan(t),t = arctan(u), du
1
—5—=dt:
cos?(t)
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= (lim arctan(a)) — arctan(v/3).
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We know that tangent approaches positive-infinity on (—7/2,7/2) as its argument ap-

proaches m/2: therefore, the limit as arctangent approaches +oo is just 77/2. Similarly,

we know that tangent is equal to v/3 when its argument is equal to 7/3; therefore,

arctan(v/3) is /3. Therefore, our integral is just is 7/6.
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Use Taylor polynomials to approximate sin(.8) to within #1074
Solution. Recall that the 2n + 1-degree Taylor polynomial for sin(x) around 0 is just
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Write sin(z) as the sum of its 2n + 1-degree Taylor polynomial and its 2n + 1-degree
remainder function:

sin(x) = Top41(sin(x); 0) + Rop+1(sin(x); 0).

If we can make | Rap, 11 (sin(z); 0)| < 1075, for some value of n, we can then approximate
sin(z) by using its corresponding Taylor polynomial.

So: Taylor’s theorem says that for any x > 0, we have
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We only want to show that this is small; so we can bound various things in this
integral above by other values. In particular, any derivative of sin will be < 1 in
terms of magnitude, so we can replace the derivatives with 1; as well, we can replace
the quantity (z —¢)?"*! with 22"+, This gives us
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For x = .8, this is < 107 for the first time at n = 3.
Therefore, sin(.8) is equal to Th.341(sin(z); 0) at .8, to within +10~%, and therefore is

roughly
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(a) Find the Taylor series for In(1 + 2°) centered around 0.
Solution. First, recall that the Taylor series for In(1 — x) was

n=1 n
which was valid for z € (—1,1): in other words, for any x € (—1,1), we had

oo
n(l—x) Z %

n=1

| Rop+1(sin(x); 0)]| <

T7(sin(x); 0)

to within +£10~%.



If we plug in —2% for z in the above expression, we get
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which is again true for all € (—1,1). Because Taylor series are the unique
power series representation of a function where they exist, and In(1 + %) is an
infinitely differentiable function on (—1, 1), its Taylor series must be

i(_l)n—klﬂ.
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Using the power series above, what complex power series would you use to define
f(2) =In(1+ 2%) in the complex plane?
Solution. Just like we did in class when we defined e?, we might try

0 6n
In(1 + 28) = Z(-1)n+1%.
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What is the radius of convergence R of this power series?
Solution. Take any real value of x > 0. Then, because x is real and positive,
we can use the ratio test to see that the series
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is less than 1. In other words, this series converges for positive real values of
<1
Because absolute convergence implies convergence, this means that the series
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also converges when z is real and in [0, 1). Therefore, by our theorem on radii of
convergence, our series must converge for any z € C with ||z|| < 1.
However, we can also see that this series diverges when z = i, because
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Therefore, our series diverges for at least one value of z with magnitude 1. Con-
sequently, because our series converges for any z with ||z|| < 1, and diverges for a
value of z with ||z|| = 1, the radius of convergence of our series must be exactly
1.



(d) Find two values of z € C with ||z|| = R such that f(z) converges, and two more
values of z € C, ||z|| = R such that f(z) diverges.
Solution. If z = +1, then our series is just
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which is the alternating harmonic series (which converges.)

However, if z = ¢/, then 26 = €™ = —1, and therefore our series is
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which diverges (because it’s —1 times the harmonic series.)



