
Math 8 Instructor: Padraic Bartlett

Practice Final: Solutions

Week 10 Caltech 2012

1. Determine whether the following series converge:

(a)

∞∑
n=1

1

(ln(n))k)
.

Solution. First, notice that because ln(n) is a positive and monotonically in-
creasing function on [1,∞), the function 1

(ln(n))k
is a positive and monotonically

decreasing function on [1,∞). Therefore, by the integral test, we know that our
series converges if and only if the improper integral∫ ∞

1

1

(ln(x))k
dx

exists and is finite. We evaluate this integral via the u-substitution u = ln(x)⇒
x = eu, du = 1

xdx⇒ dx = eudu:∫ ∞
1

1

(ln(x))k
dx =

∫ lima→∞ ln(a)

ln(1)

1

uk
· eudu

=

∫ ∞
0

eu

uk
du.

Notice that limu→∞
eu

uk
= ∞; you can see this by applying L’Hôpital’s theorem

k times, at which point the limit will become limu→∞
eu

k! . (This is justified
because at every step up to k, the top was eu and the bottom was a nonconstant
polynomial.) Therefore, because the function we’re integrating goes off to infinity
as u→∞, its integral on [0,∞] must diverge to infinity as well.

(b)

∞∑
n=1

1

(ln(n))n
.

Solution. We use a similar argument to (a.) Again, because ln(n) is a positive
and monotonically increasing function on [1,∞), the function 1

(ln(n))n is a positive

and monotonically decreasing function on [1,∞). Therefore, by the integral test,
we know that our series converges if and only if the improper integral∫ ∞

1

1

(ln(x))x
dx

1



exists and is finite. We evaluate this integral via the same u-substitution u =
ln(x)⇒ x = eu, du = 1

xdx⇒ dx = eudu as before:∫ ∞
1

1

(ln(x))x
dx =

∫ lima→∞ ln(a)

ln(1)

1

ueu
· eudu

=

∫ ∞
0

eu

ueu
du

=

∫ ∞
0

eu

eln(u)·eu
du

=

∫ ∞
0

eu−e
u ln(u)du

We want to know whether this integral is finite or not. By itself, we don’t know:
it looks hard to directly integrate! However, there are simpler upper bounds
for the function we’re integrating that are easier to deal with: so let’s do that
instead.

Notice that for u > 3, we have that u− eu ln(u) < −u. This is because it’s true
at u = 3 (because 3− e3 ln(3) ∼ −18.6 < −3) and the derivative of u− eu ln(u),
1 − eu

u − e
u ln(u), is less than 1 − eu ln(u), which is less than 1 − eu for u > 3,

which is less than −1, the derivative of −u, again for u > 3. Therefore, for u > 3,
we have u− eu ln(u) < u− eu < −u; so we’ve shown that

eu−e
u ln(u) < e−u.

So: how can we relate the integral of e−u to the integral of eu−e
u ln(u)? Easy: use

the integral test again!

In particular, notice that the series
∑∞

n=1 e
−n converges by the ratio test (limn→∞

e−(n+1)

e−n =
1
e < 1). Therefore, by the comparison test, the series

∞∑
n=1

en−e
n ln(n)

must also converge.

But as we showed above, the derivative of u − eu ln(u) is < −1 for u > 3, so
eu−e

u ln(u) is a monotonically decreasing function for u > 3, and is therefore
an eventually monotonically decreasing function. Therefore, because the series∑∞

n=1 e
n−en ln(n) converges, the corresponding integral∫ ∞

0
eu−e

u ln(u)du

converges, by our second application of the integral test. But this means that
our original series

∞∑
n=1

1

(ln(n))n
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also converges, by our first application of the integral test!

(c)

∞∑
n=1

sin
(
1
n

)
n

.

Solution. We proceed by the comparison test. The idea is the following: we
know that sin(x) ≤ x, for any positive value of x. (To see why: it’s true at x = 0.
As well, the derivative of x is 1, which is always greater than the derivative of
sin(x), which is cos(x). Therefore, going forward, we have sin(x) < x, for all
positive x.) We seek to apply the comparison test here. We can do so because
sin(1/n) is always positive (because sin(x) is positive on [0, π]). If we compare
sin(1/n) to 1/n, we have that the series in (c) converges if the series

∞∑
n=1

1

n2

converges. We’ve proven in class that this series converges; therefore, our original
series also converges.

2. Evaluate the improper integral ∫ ∞
2

1

x
√
x2 − 1

dx.

Solution. Try the u-substitution u =
√
x2 − 1 ⇒ x =

√
u2 + 1. If you do this, you

get that du = x√
x2−1dx⇒

u√
u2+1

du = dx, and therefore that our original integral is

∫ lima→∞
√
a2−1

√
22−1

1

u
√
u2 + 1

· u√
u2 + 1

du =

∫ ∞
√
3

1

u2 + 1
du.

Now, you should try a trig substitution! In particular, try u = tan(t), t = arctan(u), du =
1

cos2(t)
dt:

∫ ∞
√
3

1

u2 + 1
du =

∫ lima→∞ arctan(a)

arctan(
√
3)

1

1 + tan2(u)
· 1

cos2(u)
du

=

∫ lima→∞ arctan(a)

arctan(
√
3)

1du

=
(

lim
a→∞

arctan(a)
)
− arctan(

√
3).

We know that tangent approaches positive-infinity on (−π/2, π/2) as its argument ap-
proaches π/2: therefore, the limit as arctangent approaches +∞ is just π/2. Similarly,
we know that tangent is equal to

√
3 when its argument is equal to π/3; therefore,

arctan(
√

3) is π/3. Therefore, our integral is just is π/6.
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3. Use Taylor polynomials to approximate sin(.8) to within ±10−4.
Solution. Recall that the 2n+ 1-degree Taylor polynomial for sin(x) around 0 is just

T2n+1(sin(x); 0) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Write sin(x) as the sum of its 2n+ 1-degree Taylor polynomial and its 2n+ 1-degree
remainder function:

sin(x) = T2n+1(sin(x); 0) +R2n+1(sin(x); 0).

If we can make |R2n+1(sin(x); 0)| < 10−5, for some value of n, we can then approximate
sin(x) by using its corresponding Taylor polynomial.

So: Taylor’s theorem says that for any x > 0, we have

|R2n+1(sin(x); 0)| =

∣∣∣∣∣∣∣
∫ x

0

(
d(2n+1)

dy(2n+1) (sin(y))
) ∣∣∣

y=t

(2n+ 1)!
(x− t)(2n+1)dt

∣∣∣∣∣∣∣ .
We only want to show that this is small; so we can bound various things in this
integral above by other values. In particular, any derivative of sin will be ≤ 1 in
terms of magnitude, so we can replace the derivatives with 1; as well, we can replace
the quantity (x− t)2n+1 with x2n+1. This gives us

|R2n+1(sin(x); 0)| ≤

∣∣∣∣∣
∫ x

0

x(2n+1)

(2n+ 1)!
dt

∣∣∣∣∣ =
x2n+2

(2n+ 1)!
.

For x = .8, this is ≤ 10−4 for the first time at n = 3.

Therefore, sin(.8) is equal to T2·3+1(sin(x); 0) at .8, to within ±10−4, and therefore is
roughly

T7(sin(x); 0)
∣∣∣
x=.8

=

(
x− x3

3!
+
x5

5!
− x7

7!

) ∣∣∣
x=.8
∼ .71736

to within ±10−4.

4. (a) Find the Taylor series for ln(1 + x6) centered around 0.
Solution. First, recall that the Taylor series for ln(1− x) was

∞∑
n=1

−x
n

n
,

which was valid for x ∈ (−1, 1): in other words, for any x ∈ (−1, 1), we had

ln(1− x) =

∞∑
n=1

−x
n

n
.
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If we plug in −x6 for x in the above expression, we get

ln(1 + x6) =

∞∑
n=1

(−1)n+1x
6n

n
,

which is again true for all x ∈ (−1, 1). Because Taylor series are the unique
power series representation of a function where they exist, and ln(1 + x6) is an
infinitely differentiable function on (−1, 1), its Taylor series must be

∞∑
n=1

(−1)n+1x
6n

n
.

(b) Using the power series above, what complex power series would you use to define
f(z) = ln(1 + x6) in the complex plane?
Solution. Just like we did in class when we defined ez, we might try

ln(1 + z6) =
∞∑
n=1

(−1)n+1 z
6n

n
.

(c) What is the radius of convergence R of this power series?
Solution. Take any real value of x > 0. Then, because x is real and positive,
we can use the ratio test to see that the series

∞∑
n=1

x6n

n

converges when

lim
n→∞

x6(n+1)/(n+ 1)

x6n/n
= lim

n→∞

n

n+ 1
· x6 = x6

is less than 1. In other words, this series converges for positive real values of
x < 1.

Because absolute convergence implies convergence, this means that the series

∞∑
n=1

(−1)n+1 z
6n

n
.

also converges when z is real and in [0, 1). Therefore, by our theorem on radii of
convergence, our series must converge for any z ∈ C with ||z|| < 1.

However, we can also see that this series diverges when z = i, because

∞∑
n=1

(−1)n+1 ((i)6)n

n
=
∞∑
n=1

(−1)n+1 (−1)n

n
=
∞∑
n=1

(−1)2n+1 1

n
= −

∞∑
n=1

1

n
.

Therefore, our series diverges for at least one value of z with magnitude 1. Con-
sequently, because our series converges for any z with ||z|| < 1, and diverges for a
value of z with ||z|| = 1, the radius of convergence of our series must be exactly
1.
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(d) Find two values of z ∈ C with ||z|| = R such that f(z) converges, and two more
values of z ∈ C, ||z|| = R such that f(z) diverges.
Solution. If z = ±1, then our series is just

∞∑
n=1

(−1)n+1 16n

n
,

which is the alternating harmonic series (which converges.)

However, if z = ±eiπ/6, then z6 = eiπ = −1, and therefore our series is

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

(−1)2n+1 1

n
= −

∞∑
n=1

1

n

which diverges (because it’s −1 times the harmonic series.)
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