Math 8
Practice Final: Solutions

Week 10 Caltech 2012

1. Determine whether the following series converge:
(a)

$$
\sum_{n=1}^{\infty} \frac{1}{\left.(\ln (n))^{k}\right)}
$$

Solution. First, notice that because $\ln (n)$ is a positive and monotonically increasing function on $[1, \infty)$, the function $\frac{1}{(\ln (n))^{k}}$ is a positive and monotonically decreasing function on $[1, \infty)$. Therefore, by the integral test, we know that our series converges if and only if the improper integral

$$
\int_{1}^{\infty} \frac{1}{(\ln (x))^{k}} d x
$$

exists and is finite. We evaluate this integral via the u-substitution $u=\ln (x) \Rightarrow$ $x=e^{u}, d u=\frac{1}{x} d x \Rightarrow d x=e^{u} d u:$

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{(\ln (x))^{k}} d x & =\int_{\ln (1)}^{\lim _{a \rightarrow \infty} \ln (a)} \frac{1}{u^{k}} \cdot e^{u} d u \\
& =\int_{0}^{\infty} \frac{e^{u}}{u^{k}} d u .
\end{aligned}
$$

Notice that $\lim _{u \rightarrow \infty} \frac{e^{u}}{u^{k}}=\infty$; you can see this by applying L'Hôpital's theorem k times, at which point the limit will become $\lim _{u \rightarrow \infty} \frac{e^{u}}{k!}$. (This is justified because at every step up to k, the top was e^{u} and the bottom was a nonconstant polynomial.) Therefore, because the function we're integrating goes off to infinity as $u \rightarrow \infty$, its integral on $[0, \infty]$ must diverge to infinity as well.
(b)

$$
\sum_{n=1}^{\infty} \frac{1}{(\ln (n))^{n}}
$$

Solution. We use a similar argument to (a.) Again, because $\ln (n)$ is a positive and monotonically increasing function on $[1, \infty)$, the function $\frac{1}{(\ln (n))^{n}}$ is a positive and monotonically decreasing function on $[1, \infty)$. Therefore, by the integral test, we know that our series converges if and only if the improper integral

$$
\int_{1}^{\infty} \frac{1}{(\ln (x))^{x}} d x
$$

exists and is finite. We evaluate this integral via the same u-substitution $u=$ $\ln (x) \Rightarrow x=e^{u}, d u=\frac{1}{x} d x \Rightarrow d x=e^{u} d u$ as before:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{(\ln (x))^{x}} d x & =\int_{\ln (1)}^{\lim m_{a \rightarrow \infty} \ln (a)} \frac{1}{u^{e^{u}}} \cdot e^{u} d u \\
& =\int_{0}^{\infty} \frac{e^{u}}{u^{u}} d u \\
& =\int_{0}^{\infty} \frac{e^{u}}{e^{\ln (u) \cdot e^{u}} d u} \\
& =\int_{0}^{\infty} e^{u-e^{u} \ln (u)} d u
\end{aligned}
$$

We want to know whether this integral is finite or not. By itself, we don't know: it looks hard to directly integrate! However, there are simpler upper bounds for the function we're integrating that are easier to deal with: so let's do that instead.
Notice that for $u>3$, we have that $u-e^{u} \ln (u)<-u$. This is because it's true at $u=3$ (because $3-e^{3} \ln (3) \sim-18.6<-3$) and the derivative of $u-e^{u} \ln (u)$, $1-\frac{e^{u}}{u}-e^{u} \ln (u)$, is less than $1-e^{u} \ln (u)$, which is less than $1-e^{u}$ for $u>3$, which is less than -1 , the derivative of $-u$, again for $u>3$. Therefore, for $u>3$, we have $u-e^{u} \ln (u)<u-e^{u}<-u$; so we've shown that

$$
e^{u-e^{u} \ln (u)}<e^{-u} .
$$

So: how can we relate the integral of e^{-u} to the integral of $e^{u-e^{u} \ln (u)}$? Easy: use the integral test again!
In particular, notice that the series $\sum_{n=1}^{\infty} e^{-n}$ converges by the ratio test $\left(\lim _{n \rightarrow \infty} \frac{e^{-(n+1)}}{e^{-n}}=\right.$ $\frac{1}{e}<1$). Therefore, by the comparison test, the series

$$
\sum_{n=1}^{\infty} e^{n-e^{n} \ln (n)}
$$

must also converge.
But as we showed above, the derivative of $u-e^{u} \ln (u)$ is <-1 for $u>3$, so $e^{u-e^{u} \ln (u)}$ is a monotonically decreasing function for $u>3$, and is therefore an eventually monotonically decreasing function. Therefore, because the series $\sum_{n=1}^{\infty} e^{n-e^{n} \ln (n)}$ converges, the corresponding integral

$$
\int_{0}^{\infty} e^{u-e^{u} \ln (u)} d u
$$

converges, by our second application of the integral test. But this means that our original series

$$
\sum_{n=1}^{\infty} \frac{1}{(\ln (n))^{n}}
$$

also converges, by our first application of the integral test!
(c)

$$
\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n}
$$

Solution. We proceed by the comparison test. The idea is the following: we know that $\sin (x) \leq x$, for any positive value of x. (To see why: it's true at $x=0$. As well, the derivative of x is 1 , which is always greater than the derivative of $\sin (x)$, which is $\cos (x)$. Therefore, going forward, we have $\sin (x)<x$, for all positive x.) We seek to apply the comparison test here. We can do so because $\sin (1 / n)$ is always positive (because $\sin (x)$ is positive on $[0, \pi]$). If we compare $\sin (1 / n)$ to $1 / n$, we have that the series in (c) converges if the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

converges. We've proven in class that this series converges; therefore, our original series also converges.
2. Evaluate the improper integral

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x
$$

Solution. Try the u-substitution $u=\sqrt{x^{2}-1} \Rightarrow x=\sqrt{u^{2}+1}$. If you do this, you get that $d u=\frac{x}{\sqrt{x^{2}-1}} d x \Rightarrow \frac{u}{\sqrt{u^{2}+1}} d u=d x$, and therefore that our original integral is

$$
\int_{\sqrt{2^{2}-1}}^{\lim _{a \rightarrow \infty} \sqrt{a^{2}-1}} \frac{1}{u \sqrt{u^{2}+1}} \cdot \frac{u}{\sqrt{u^{2}+1}} d u=\int_{\sqrt{3}}^{\infty} \frac{1}{u^{2}+1} d u
$$

Now, you should try a trig substitution! In particular, $\operatorname{try} u=\tan (t), t=\arctan (u), d u=$ $\frac{1}{\cos ^{2}(t)} d t$:

$$
\begin{aligned}
\int_{\sqrt{3}}^{\infty} \frac{1}{u^{2}+1} d u & =\int_{\arctan (\sqrt{3})}^{\lim _{a \rightarrow \infty} \arctan (a)} \frac{1}{1+\tan ^{2}(u)} \cdot \frac{1}{\cos ^{2}(u)} d u \\
& =\int_{\arctan (\sqrt{3})}^{\lim _{a \rightarrow \infty} \arctan (a)} 1 d u \\
& =\left(\lim _{a \rightarrow \infty} \arctan (a)\right)-\arctan (\sqrt{3}) .
\end{aligned}
$$

We know that tangent approaches positive-infinity on $(-\pi / 2, \pi / 2)$ as its argument approaches $\pi / 2$: therefore, the limit as arctangent approaches $+\infty$ is just $\pi / 2$. Similarly, we know that tangent is equal to $\sqrt{3}$ when its argument is equal to $\pi / 3$; therefore, $\arctan (\sqrt{3})$ is $\pi / 3$. Therefore, our integral is just is $\pi / 6$.
3. Use Taylor polynomials to approximate $\sin (.8)$ to within $\pm 10^{-4}$.

Solution. Recall that the $2 n+1$-degree Taylor polynomial for $\sin (x)$ around 0 is just

$$
T_{2 n+1}(\sin (x) ; 0)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

Write $\sin (x)$ as the sum of its $2 n+1$-degree Taylor polynomial and its $2 n+1$-degree remainder function:

$$
\sin (x)=T_{2 n+1}(\sin (x) ; 0)+R_{2 n+1}(\sin (x) ; 0)
$$

If we can make $\left|R_{2 n+1}(\sin (x) ; 0)\right|<10^{-5}$, for some value of n, we can then approximate $\sin (x)$ by using its corresponding Taylor polynomial.
So: Taylor's theorem says that for any $x>0$, we have

$$
\left|R_{2 n+1}(\sin (x) ; 0)\right|=\left|\int_{0}^{x} \frac{\left.\left(\frac{d^{(2 n+1)}}{d y^{(2 n+1)}}(\sin (y))\right)\right|_{y=t}}{(2 n+1)!}(x-t)^{(2 n+1)} d t\right| .
$$

We only want to show that this is small; so we can bound various things in this integral above by other values. In particular, any derivative of sin will be ≤ 1 in terms of magnitude, so we can replace the derivatives with 1 ; as well, we can replace the quantity $(x-t)^{2 n+1}$ with $x^{2 n+1}$. This gives us

$$
\left|R_{2 n+1}(\sin (x) ; 0)\right| \leq\left|\int_{0}^{x} \frac{x^{(2 n+1)}}{(2 n+1)!} d t\right|=\frac{x^{2 n+2}}{(2 n+1)!}
$$

For $x=.8$, this is $\leq 10^{-4}$ for the first time at $n=3$.
Therefore, $\sin (.8)$ is equal to $T_{2 \cdot 3+1}(\sin (x) ; 0)$ at .8 , to within $\pm 10^{-4}$, and therefore is roughly

$$
\left.T_{7}(\sin (x) ; 0)\right|_{x=.8}=\left.\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}\right)\right|_{x=.8} \sim .71736
$$

to within $\pm 10^{-4}$.
4. (a) Find the Taylor series for $\ln \left(1+x^{6}\right)$ centered around 0 .

Solution. First, recall that the Taylor series for $\ln (1-x)$ was

$$
\sum_{n=1}^{\infty}-\frac{x^{n}}{n}
$$

which was valid for $x \in(-1,1)$: in other words, for any $x \in(-1,1)$, we had

$$
\ln (1-x)=\sum_{n=1}^{\infty}-\frac{x^{n}}{n} .
$$

If we plug in $-x^{6}$ for x in the above expression, we get

$$
\ln \left(1+x^{6}\right)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{6 n}}{n}
$$

which is again true for all $x \in(-1,1)$. Because Taylor series are the unique power series representation of a function where they exist, and $\ln \left(1+x^{6}\right)$ is an infinitely differentiable function on $(-1,1)$, its Taylor series must be

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{6 n}}{n}
$$

(b) Using the power series above, what complex power series would you use to define $f(z)=\ln \left(1+x^{6}\right)$ in the complex plane?
Solution. Just like we did in class when we defined e^{z}, we might try

$$
\ln \left(1+z^{6}\right)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{6 n}}{n}
$$

(c) What is the radius of convergence R of this power series?

Solution. Take any real value of $x>0$. Then, because x is real and positive, we can use the ratio test to see that the series

$$
\sum_{n=1}^{\infty} \frac{x^{6 n}}{n}
$$

converges when

$$
\lim _{n \rightarrow \infty} \frac{x^{6(n+1)} /(n+1)}{x^{6 n} / n}=\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot x^{6}=x^{6}
$$

is less than 1. In other words, this series converges for positive real values of $x<1$.
Because absolute convergence implies convergence, this means that the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{6 n}}{n}
$$

also converges when z is real and in $[0,1)$. Therefore, by our theorem on radii of convergence, our series must converge for any $z \in \mathbb{C}$ with $\|z\|<1$.
However, we can also see that this series diverges when $z=i$, because

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\left((i)^{6}\right)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-1)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{2 n+1} \frac{1}{n}=-\sum_{n=1}^{\infty} \frac{1}{n} .
$$

Therefore, our series diverges for at least one value of z with magnitude 1 . Consequently, because our series converges for any z with $\|z\|<1$, and diverges for a value of z with $\|z\|=1$, the radius of convergence of our series must be exactly 1.
(d) Find two values of $z \in \mathbb{C}$ with $\|z\|=R$ such that $f(z)$ converges, and two more values of $z \in \mathbb{C},\|z\|=R$ such that $f(z)$ diverges.
Solution. If $z= \pm 1$, then our series is just

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1^{6 n}}{n}
$$

which is the alternating harmonic series (which converges.)
However, if $z= \pm e^{i \pi / 6}$, then $z^{6}=e^{i \pi}=-1$, and therefore our series is

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-1)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{2 n+1} \frac{1}{n}=-\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges (because it's -1 times the harmonic series.)

