Math 8	Instructor: Padraic Bartlett	
Week 10	Practice Final!	

1. Determine whether the following series converge:
(a)

$$
\sum_{n=1}^{\infty} \frac{1}{\left.(\ln (n))^{k}\right)}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{1}{(\ln (n))^{n}} .
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n} .
$$

2. Evaluate the improper integral

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-1}} d x
$$

3. Use Taylor polynomials to approximate $\sin (.8)$ to within $\pm 10^{-4}$.
4. (a) Find the Taylor series for $\ln \left(1+x^{6}\right)$.
(b) Using the power series above, what complex power series would you use to define $f(z)=\ln \left(1+x^{6}\right)$ in the complex plane?
(c) What is the radius of convergence R of this power series?
(d) Find two values of $z \in \mathbb{C}$ with $\|z\|=R$ such that $f(z)$ converges, and two more values of $z \in \mathbb{C},\|z\|=R$ such that $f(z)$ diverges.
