
Math 8 Instructor: Padraic Bartlett

Lecture 7: The Tools of Integration

Week 7 Caltech - Fall, 2011

1 Random Questions

Question 1.1. Show that if f : R→ [0, 1] satisfies the following properties:

• f ′(x) exists everywhere,

• f ′(x) = 0 wherever it exists, and

• f(0) = 0,

then f(x) = 0 for all x.
Can you find a function f : R→ [0, 1] such that

• f ′(x) exists everywhere but a set of content zero,

• f ′(x) = 0 wherever it exists, and

• f(0) = 0,

and f(1) = 1?

Question 1.2. Consider the following definition:

Definition 1.3. A graph G with n vertices and m edges consists of the following two
objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints.

We say that a graph G is a fullerene if it satisfies the following four properties:

1. Every vertex in G is involved in three edges.

2. There is a way to draw G in R2, representing the vertices of G with points in the
plane and the edges of G as line segments connecting these points, so that none of
these edges overlap.

3. Whenever you draw G like this, we call any region of R2 surrounded by G’s edges a
face of G. If G is a fullerene, all of its faces are either pentagons or hexagons.
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4. No vertex is involved in more than 1 hexagon.

These properties come from a mathematical attempt to classify the carbon molecules known
as fullerenes, which (if you think of the vertices as carbons, and the edges as bonds) are
spheres made out of sticking carbons together that satisfy these properties. For example,
property 2 makes sure that whatever graph you’ve drawn can be actually drawn on the
surface of a sphere without overlaps: just “drape” our drawing on top of a sphere: property
1 reflects the number of bonds carbons often like to make (one double and two single,) and
properties 3 and 4 relate to the bond angles carbons are capable of making (mostly only
pentagons and hexagons, with few pentagons.)

Show that the smallest graph that satisfies these properties is C60, buckminsterfullerene,
which actually exists.

Question 1.4. Can you arrange the sixteen cards {A,K,Q, J} × {♥,♠,♣,♦} into a 4× 4
grid, so that none of the suits or symbols are repeated in any row or column?

How about for general n - i.e. if you have n symbols {21, . . .2n} and n suits {41, . . .4n},
can you arrange the n2 cards {21, . . .2n} × {41, . . .4n} into a n × n grid such that no
symbol nor suit is repeated in any of those rows?

2 The Tools of Integration

Last week, we introduced the integral, but didn’t really provide any good tools for how to
actually calculate it; as a result, integrating functions as simple as xp was a difficult task
for us. We fix this problem in this week’s talks: in these three lectures, we introduce a
multitude of new theorems and tools for calculating integrals, and provide several examples
of their use.
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2.1 Definitions and Theorems

In Math 1, we’ve constructed a ton of definitions and theorems related to the integral. We
review them here:

Definition 2.1. A set X ⊂ R is called content zero if the following holds: for any ε > 0,
there is some finite collection {Ik}nk=1 of closed intervals of positive length, such that

(1)
n⋃

k=1

Ik, the union of all of these intervals, contains X.

(2)
n∑

k=1

length(Ik) ≤ ε, where the length of an interval [a, b] is b− a.

In essence, sets have content zero if they don’t take up any “space” on the real line – i.e.
if we can cover them with finitely many intervals with arbitrarily small total length.

Similarly, we can define the concept of measure zero as a slightly weaker condition: a
set X has measure 0 if for any ε > 0, there is some collection (possibly infinite!) {Ik}∞k=1 of
closed intervals of positive length, such that

(1)
∞⋃
k=1

Ik, the union of all of these intervals, contains X.

(2)
∞∑
k=1

length(Ik) ≤ ε.

This definition roughly is the same as content zero – sets have measure zero if they
don’t take up space on the real line – but we get to use infinitely many intervals here, which
makes showing that certain sets are measure zero easier.

Basically, these two definitions are ways of describing what it means for a subset of R
to be small. Something we might hope for, in working with the integral, is that the integral
shouldn’t care about what happens on “small” sets: for example, if a function is 3 almost
everywhere, then the area under its curve should still be considered to be 3x, provided that
the places of discontinuity are on a “small” enough set.

The following theorem says, roughly, that this is always true:

Theorem 2.2. If f(x) is a bounded function on the interval [a, b], and the collection A of
f(x)’s discontinuities on [a, b] is a set of content zero, then the integral∫ b

a
f(x)dx

exists. Furthermore, we can redefine f(x) to be whatever we want on this set of discontinu-
ities A, (so long as we insure that the resulting function is still bounded.)

Furthermore, this theorem still holds if the set A is of measure zero, not just content
zero.
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This theorem is incredibly useful for showing that an integral exists: but what can we
use to find out what it’s actually equal to? The answer: the Fundamental Theorems of
Calculus!

The Fundamental Theorems of Calculus, at first glance, seem like rather formidable
statements: their title is set in All Caps!, their statements seem kind of ponderous, and in
general they just seem like tricky things to understand and use. Luckily for us, however,
these two theorems are actually really simple statements: at their heart, all that they say is
that integration and derivation “undo” each other – i.e. that for continuous functions f(x),

• (1st FTC) the derivative of the integral of f(x) is f(x), and

• (2nd FTC) the integral of the derivative of f(x) is also pretty much just f(x), up to
a constant term C.

Put another way, the two FTC’s say that integration and derivation are in some sense
inverse operations to each other! (This intuitive idea should be second nature to those of
you who’ve been through a standard calculus class before, and first encountered the idea of
the integral as a kind of “antiderivative.” )

We state these two theorems here:

Theorem 2.3. (The First Fundamental Theorem of Calculus:) Let [a, b] be some interval.
If f is a bounded and integrable function over the interval [a, x] for any x ∈ [a, b], then the
function

A(x) :=

∫ x

a
f(t)dt

exists for all x ∈ [a, b]. Furthermore, if f(x) is continuous, the derivative of this function,
A′(x), is equal to f(x).

In other words: for continuous functions f(x), the integral of the derivative of f(x) is
just f(x).

Theorem 2.4. (The Second Fundamental Theorem of Calculus:) Let [a, b] be some interval.
Suppose that f(x) is a function that has ϕ(x) as its primitive1 on [a, b]; as well, suppose
that f(x) is bounded and integrable on [a, b]. Then, we have that∫ b

a
f(x)dx = ϕ(b)− ϕ(a).

In other words: for a bounded and integrable function f(x), the derivative of the integral
of f(x) is just f(x), up to some constant term (given by f(a), say.)

This idea, that integration and differentiation are kind of “opposites,” motivates us to
ask the following question:

Question 2.5. For derivation, we had two central tools:

• the chain rule: i.e. for differentiable f, g, we have (f(g(x))′ = f ′(g(x)) · g′(x).

1A function f(x) has ϕ(x) as its primitive on some interval [a, b] iff ϕ′(x) = f(x) on all of [a, b].
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• the product rule: i.e. for differentiable f, g, we have (f(x) · g(x))′ = f ′(x)g(x) +
g′(x)f(x).

If we apply the fundamental theorems of calculus to these two rules, will we get a pair of
“integral” theorems as well?

As it turns out: yes! Consider the following two theorems, which are direct consequences
of the fundamental theorems of calculus and the chain/product rules:

Theorem 2.6. (Integration by Parts – i.e. the “integral product rule:”) If f, g are a pair
of C1 functions on [a, b] – i.e they have continuous derivatives on [a, b] – then we have∫ b

a
f(x)g′(x) = f(x)g(x)

∣∣∣b
a

=

∫ b

a
f ′(x)g(x)dx

Theorem 2.7. (Integration by Substitution – i.e. the “integral chain rule:”) If f is a
continuous function on g([a, b]) and g is a C1 functions on [a, b], then we have∫ b

a
f(g(x))g′(x)dx =

∫ g(b)

g(a)
f(x)dx.

That’s a lot of theorems! We illustrate their use in the following sections, starting
with the concept of measure/content zero sets, then showing how to use the fundamental
theorems of calculus, and moving finally to integration by parts and by substitution.

2.2 Sets of Content and Measure Zero

Claim 1. Any finite set has content and measure zero.

Proof. Pick any finite set X = {x1 . . . xn}, any ε > 0, and let Ik = (xk − ε/2n, xk + ε/2n).
Then the union

⋃
Ik contains all of the xk’s by definition; as well, because there are n total

intervals and each interval has length ≤ ε/n, the total length of the Ik’s is bounded by ε.
Thus, this set has measure and content zero, as claimed.

Claim 2. N has measure zero, but not content zero.

Proof. To see that this set does not have content zero, take any finite collection I1, . . . In of
intervals containing the natural numbers. There are infinitely many natural numbers and
only finitely many intervals: therefore, one interval must contain infinitely many natural
numbers, and thus have infinite length. Therefore it is impossible for any finite collection of
intervals to both contain the natural numbers and have total length less than ε, for *any*
finite value of ε.

However, if we are allowed to use infinitely many intervals, this is quite doable! Pick
any ε > 0, and let Ik = (k − ε/(2 · 2n), k + ε/(2 · 2n). Then the union

⋃
Ik contains N by

definition; as well, we have that

∞∑
n=1

length(In) =

∞∑
n=1

ε

2n
= ε,

by using the geometric series
∑∞

n=1 1/2n = 1. Therefore this set is measure zero, as claimed.
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Claim 3. Q has measure zero. (Because it contains N, it does not have content zero, as we
just proved that N does not have content zero.)

Proof. Recall from week 2 our proof that the rational numbers are countable: i.e. we can
pair up the rational numbers with the natural numbers, and therefore write Q = {qi}∞i=1.

Then, do exactly what we did for our N proof: pick any ε > 0, and let Ik = (qk − ε/(2 ·
2n), qk + ε/(2 · 2n). Then the union

⋃
Ik contains {qn}∞n=1 = Q by definition; as well, we

have that

∞∑
n=1

length(In) =

∞∑
n=1

ε

2n
= ε,

by using the geometric series
∑∞

n=1 1/2n = 1. Therefore this set has measure zero, as
claimed.

It’s worth taking a second to think about the weirdness of the above claim: the rational
numbers are a set that is dense in the real line – they are, in a sense, everywhere. Yet, we’ve
just shown that we can cover *all* of the rational numbers with intervals of arbitrarily small
length! For example, there’s a way to pick a bunch of closed intervals of positive length
whose total length is just 1, and yet manage to contain *all* of the rational numbers in Q!

Definition. We define the Cantor set C∞ in stages, as follows:

• C0 = [0, 1].

• C1 = C0 with its middle-third removed: i.e. C1 = [0, 13 ] ∪ [23 , 1].

• C2 = C1 with the middle-third of each of its intervals removed: i.e. C2 = [0, 19 ] ∪
[29 ,

1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1].

•
...

• Cn+1 = Cn with the middle-third of each of the intervals in Cn removed.

•
...

• C∞ =
⋂∞

n=1Cn.

Claim 4. The Cantor set is an uncountable set with content (and therefore measure) zero.

Proof. Our proof goes in stages. First, notice that for every n, the set Cn is a collection of
2n intervals each of length 1/3n. We can prove this by induction: our base cases are noting
that C0 is a set containing 20 = 1 interval with length 1/30 = 1, and C1 is a set containing
21 intervals of length 1/31. Inductively, if Cn is made of 2n intervals of length 1/3n, then
because we form Cn+1 by cutting the middle-third out of every interval, we know that Cn+1

has 2n · 2 = 2n+1 intervals in it, all of length 1
3 ·

1
3n = 1

3n+1 .
Therefore, because

• C∞ is contained within every Cn,
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• every Cn is a finite collection of intervals of length 2n/3n, and

• limn→∞ 2n/3n = 0,

we know that for any ε > 0 we can find a n such that 2n/3n < ε, and therefore a finite
collection Cn of intervals that contains C∞ with total length = 2n/3n < ε. So C∞, the
Cantor set, has content and measure zero.

The next claim we have is the following: the Cantor set consists of all of the real numbers
in [0, 1] that you can write in ternary2 using only the digits 0 and 2. We only sketch our
proof here, which is by induction: specifically, we claim that the numbers in Cn are precisely
the numbers in [0, 1] that can be written in ternary so that their first n digits don’t have a
0 or 2.

Our claim is true for C0 trivially; so, to illustrate what’s going on, we look at C1. Here,
we’ve taken out the middle-third of the interval [0, 1]: in other words, we’ve deleted all of
the numbers of the form .1 ∼∼∼ . . . from our interval, leaving only the numbers who can
be written as .0 ∼∼∼ . . . or .2 ∼∼∼ . . .. In general, when we delete the middle-thirds of
the interval Cn, we are doing precisely the same thing: we’re deleting all of the numbers
whose n-th digits are 1 in base 3, leaving only those which can be written using 0’s and 2’s
in base 3.

However, if this is true, we have an obvious bijection between C∞ and all of [0, 1], given
by

.022020220 . . .ternary 7→ .011010110 . . .binary ,

the map that replaces the digit 2 with the digit 1 and interprets our number as a binary
string. Therefore, because we know that [0, 1] is uncountable, our set C∞ is uncountable as
well. So content zero sets can still contain an awful lot of points – uncountably infinitely
many, for example!

2.3 Example Uses of the Fundamental Theorems of Calculus

One particular use of the Second Fundamental Theorem of Calculus is that it allows us to
turn our knowledge of the derivative into knowledge about the integral: i.e. that integration
is just antidifferentiation. To illustrate this concept, consider the following two examples:

Example 2.8. ∫ b

0
xpdx =

bp+1

p+ 1
.

Proof. xp is a continuous and bounded function on [0, b], for any b; furthermore, we know
that (

xp+1

p+ 1

)′
=
p+ 1

p+ 1
xp = xp, ∀x,

2A number is written in decimal, or base 10, if when you write 21.45 you mean the number 2 · 101 + 2 ·
100 + 4 · 10−1 + 5 · 10−2. Similarly, a number is written in binary, or base 2, if when you write 11.01 you
mean 1 · 21 + 1 · 20 + 0 · 2−1 + 1 · 2−2; likewise, a number is written in ternary, or base 3, if when you write
201.01 you mean 2 · 32 + 0 · 31 + 1 · 30 + 0 · 3−1 + 1 · 3−2.
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so xp+1

p+1 is a primitive of xp.
Consequently, the second fundamental theorem of calculus tells us that∫ b

0
xpdx =

bp+1

p+ 1
− 0

p+ 1
=

bp+1

p+ 1
,

as claimed.

To get an idea of the power of the fundamental theorems of calculus, recall that prov-
ing this fact directly last week took like 8 boards worth of formulas and sums; with the
fundamental theorem of calculus, this was pretty much one line.

Example 2.9. ∫ b

a
cos(x)dx = sin(b)− sin(a)

Proof. Our proof here is almost identical in structure to the above proof. Note that cos(x)
is a continuous and bounded function on [a, b], for any a, b; furthermore, we know that

(sin(x))′ = cos(x), ∀x,

so sin(x) is a primitive of cos(x).
Consequently, the second fundamental theorem of calculus tells us that∫ b

0
cos(x)dx = sin(b)− sin(a),

as claimed.

The first fundamental theorem of calculus has a few uses as well. One of them is dealing
with integrals of the following form:

F (x) =

∫ g(x)

a
f(t)dt,

where f(x) is some continuous and bounded function. How can you take the derivative of
this function F (x)? Without the fundamental theorems of calculus, we’d be lost – simply
taking the derivative of the integral itself is a difficult thing without the FTC’s, and dealing
with the composition of the integral with the function g(x) seems inordinately difficult. Yet,
with the fundamental theorems of calculus, this becomes rather simple! In fact, just let

H(x) =

∫ x

a
f(t)dt.

Then we have that F (x) = H(g(x)); consequently, the chain rule says that

F ′(x) = H ′(g(x)) · g′(x).

Now, if we use the First Fundamental Theorem of Calculus to see that H ′(x) = f(x), we
have

F ′(x) = f(g(x)) · g′(x);

something we can easily calculate!
To illustrate this method, we work two examples below:
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Example 2.10. Calculate the derivative of the function

F (x) =

∫ x2

0
sin(t)dt.

Proof. First, define the function G(x) as

G(x) :=

∫ x

0
sin(t)dt.

By the fundamental theorem of calculus, we know that

G′(x) := sin(x).

Thus, because G(x2) = F (x), we can just use the chain rule to see that

(F (x))′ = (G(x2))′

= 2x ·G′(x2)

= 2x ·
(∫ x

0
sin(t)dt

)′
∣∣∣∣∣
x2

= 2x · sin(x2).

Example 2.11. Calculate the derivative of the function

F (x) =

∫ x

1/x

1

t
dt,

whenever t > 0.

Proof. First, define the function G(x) as

G(x) :=

∫ x

1

1

t
dt.

Then, by the fundamental theorem of calculus, we have that

G′(x) := 1/x.

So: note that

F (x) =

∫ x

1/x

1

t
dt =

∫ x

1

1

t
dt−

∫ 1/x

1

1

t
dt = G(x)−G(1/x).

(Note that we defined the function G here as an integral starting at 1, not 0! This is because
the integral

∫ x
0

1
t dt doesn’t even exist whenever x is nonzero. So, when you use linearity of

your integrals to split them apart, do be careful that you’re not accidentally breaking your
integral into parts that don’t exist!)
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Then, with this expression of F (x) = G(x)−G(1/x), we can just proceed by the chain
rule:

(F (x))′ = (G(x)−G(1/x))′

= G′(x)− (− 1

x2
) ·G′(1/x)

= 1/x+
1

x2
· 1

1/x

= 2/x.

2.4 Examples of Integration by Parts / Integration by Substitution

Question 2.12. What’s ∫ 2

1
x2exdx ?

Proof. Looking at this problem, it doesn’t seem like a substitution will be terribly useful:
so, let’s try to use integration by parts!

How do these kinds of proofs work? Well: what we want to do is look at the quantity
we’re integrating (in this case, x2ex,) and try to divide it into two parts – a “f(x)”-part and
a “g′(x)” part – such that when we apply the relation

∫
f(x)g′(x) = f(x)g(x)−

∫
g(x)f ′(x),

our expression gets simpler!
To ensure that our expression does in fact get simpler, we want to select our f(x) and

g′(x) such that

1. we can calculate the derivative f ′(x) of f(x) and find a primitive g(x) of g′(x), so that
either

2. the derivative f ′(x) of f(x) is simpler than the expression f(x), or

3. the integral g(x) of g′(x) is simpler than the expression g′(x).

So: often, this means that you’ll want to put quantities like polynomials or ln(x)’s in the
f(x) spot, because taking derivatives of these things generally simplifies them. Conversely,
things like ex’s or trig functions whose integrals you know are good choices for the integral
spot, as they’ll not get much more complex and their derivatives are generally no simpler.

Specifically: what should we choose here? Well, the integral of ex is a particularly
easy thing to calculate, as it’s just ex. As well, x2 becomes much simpler after repeated
derivation: consequently, we want to make the choices

f(x) = x2 g′(x) = ex

f ′(x) = 2x g(x) = ex,
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which then gives us that∫ 2

1
x2exdx = f(x)g(x)

∣∣∣2
1
−
∫ 2

1
f ′(x)g(x)dx

= x2ex
∣∣∣2
1
−
∫ 2

1
2xexdx.

Another integral! Motivated by the same reasons as before, we attack this integral with
integration by parts as well, setting

f(x) = 2x g′(x) = ex

f ′(x) = 2 g(x) = ex.

This then tells us that∫ 2

1
x2exdx = x2ex

∣∣∣2
1
−
∫ 2

1
2xexdx

= x2ex
∣∣∣2
1
−
(
f(x)g(x)

∣∣∣2
1
−
∫ 2

1
f ′(x)g(x)dx

)
= x2ex

∣∣∣2
1
−
(

2xex
∣∣∣2
1
−
∫ 2

1
2exdx

)
= x2ex

∣∣∣2
1
−
(

2xex
∣∣∣2
1
− 2ex

∣∣∣2
1

)
= 4e2 − e1 −

(
4e2 − 2e1 − 2e2 + 2e1

)
= 2e2 − e1.

So we’re done!

Question 2.13. What is ∫ 2

0
x2 sin(x3)dx ?

Proof. How do we calculate such an integral? Direct methods seem unpromising, and using
trig identities seems completely insane. What happens if we try substitution?

Well: our first question is the following: what should we pick? This is the only “hard”
part about integration by substitution – making the right choice on what to substitute in.
In most cases, what you want to do is to find the part of the integral that you don’t know
how to deal with – i.e. some sort of “obstruction.” Then, try to make a substitution that
(1) will remove that obstruction, usually such that (2) the derivative of this substitution is
somewhere in your formula.

Here, for example, the term sin(x3) is definitely an “obstruction” – we haven’t developed
any techniques for how to directly integrate such things. So, we make a substitution to make
this simpler! In specific: Let g(x) = x3. This turns our term sin(x3) into a sin(g(x)), which

11



is much easier to deal with Also, the derivative g′(x) = 3x2dx is (up to a constant) being
multiplied by our original formula – so this substitution seems quite promising. In fact, if
we calculate and use our indicated substitution, we have that∫ 2

0
x2 sin(x3)dx =

∫ 2

0
sin(g(x)) · 1

3
· g′(x)dx

=

∫ 23

03
sin(x)dx

=
sin(8)

3
− sin(0)

3

=
sin(8)

3
.

(Note that when we made our substitution, we also changed the bounds from [a, b] to
[g(a), g(b)]! Please, please, always change your bounds when you make a substitution!)
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