
MATH 8, SECTION 1, WEEK 9 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Wednesday, Nov. 23rd’s lecture, where

we continued our study of Taylor series.

1. Random Question

Question 1.1. Can you arrange the sixteen cards {A,K,Q, J}×{♥,♠,♣,♦} into
a 4×4 grid, so that none of the suits or symbols are repeated in any row or column?

How about for general n - i.e. if you have n symbols {�1, . . .�n} and n suits
{41, . . .4n}, can you arrange the n2 cards {�1, . . .�n}×{41, . . .4n} into a n×n
grid such that no symbol nor suit is repeated in any of those rows?

(Hint: General n is rather tricky. Try considering some special cases: 2 × 2,
5× 5, 6× 6, 10× 10.)

2. Taylor Series: Composition and Applications

We have discovered the Taylor polynomials for several functions in class. For
convenience’s sake, we relist them here:

T2n(cos(x), 0) =

n∑
k=0

(−1)n
x2n

(2n)!
,

T2n+1(sin(x), 0) =

n∑
k=0

(−1)n
x2n+1

(2n + 1)!
,

Tn(ex, 0) =
n∑

k=0

xk

k!

Tn(log(x + 1), 0) =

n∑
k=1

(−1)n+1x
n

x

Tn((x + y)a, 0) =

n∑
k=0

(
a

k

)
xkya−k

Can we use these “known” Taylor polynomials to derive Taylor polynomials for
other functions? For example: we know Tn(cos(x), 0). Can we use this to derive
Tn(cos(axm, 0), for any a,m ∈ R?

As it turns out, yes! We in fact have the following:
1
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Lemma 2.1.

T2n·m(cos(axm), 0) =

n∑
k=0

(−1)n
(axm)

2n

(2n)!
.

In other words, we can get the Taylor polynomial of cos(axm) by simply composing
axm with cos(x).

Proof. To show this, we merely need to show that cos(axm) and
∑n

k=0(−1)n (axm)2n

(2n)!

agree up to order 2mn at 0 – i.e. that

lim
x→0

cos(axm)−
∑n

k=0(−1)n (axm)2n

(2n)!

x2mn
= 0.

But this is immediate, as we can see by letting y = axm:

lim
x→0

cos(axm)−
∑n

k=0(−1)n (axm)2n

(2n)!

x2mn

= lim
y→0

cos(y)−
∑n

k=0(−1)n (y)2n

(2n)!

y2n/a2n

=a2n · lim
y→0

cos(y)−
∑n

k=0(−1)n (y)2n

(2n)!

y2n
,

and we know that the limit on the inside is 0 because the 2n-th Taylor polynomial

for cos(y) is in fact
∑n

k=0(−1)n (y)2n

(2n)! . As a consequence, we have that these two

functions agree up to order x2mn, and thus that

T2n·m(cos(axm), 0) =

n∑
k=0

(−1)n
(axm)

2n

(2n)!
,

as claimed. �

So: we can compose functions with Taylor series! How can we use this compo-
sition process?

2.1. A Completely Useless Taylor Series. In class, someone asked if there was
a function whose Taylor series *never* converged: i.e. if there was a function f(x),
infinitely differentiable, such that

∞∑
k=0

f (k)(a)

k!
· (x− a)k

diverged for every value of x. As it turns out, this is impossible: if x = a, we have
that

∞∑
k=0

f (k)(a)

k!
· (x− a)k =

∞∑
k=0

f (k)(a)

k!
· (a− a)k = f(a),

and thus that this series converges.
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Well, that’s a somewhat silly objection. Here’s a potentially more interesting
question: is there a function whose Taylor series around a diverges for any value of
x 6= a?

As it turns out, yes!

Lemma 2.2. The Taylor series around 0 of the function

f(x) =

∞∑
n=0

cos(2kx)

k!

diverges for any value of x 6= 0.

Proof. As it stands, we unfortunately don’t have enough mathematical firepower
to prove this directly (at least, to prove this directly within a single lecture!) So:
in order to prove this, we will use without proof the following fact:

∂k

∂xk

( ∞∑
n=0

cos(2kx)

k!

)
=

∞∑
n=0

∂k

∂xk

(
cos(2kx)

k!

)

=

∞∑
n=0

∂k

∂xk

∑∞j=0(−1)j (2kx)2j

(2j)!

k!


=

∞∑
n=0

∑∞
j=0(−1)j · ∂k

∂xk

(
(2kx)2j

(2j)!

)
k!

(Justifying this requires using things like “uniform convergence,” a concept we
haven’t discussed yet but which is not beyond your current abilities! See the notes
from Ma1d if you’re curious to see how this plays out.)

Taking this observation – that, in certain cases, derivatives can pass through
infinte sums – for granted, we can easily calculate the derivatives of f at 0.

First: recall that the n-th derivative of xj , evaluated at 0, is equal to 0 if n 6= j,
and n! if n = j. This is because

• if n > j, then taking n derivatives of xj will reduce it to 0,
• if n < j then taking n derivatives will leave j · . . . · (j −n+ 1) · xn−j , which

is 0 at 0, and
• if n = j, then taking n derivatives of xj leaves just n!, which is n! when

evaluated at 0.

Now, consider the odd derivatives of f(x):

∂2n+1

∂x2n+1
(f(x))

∣∣∣∣∣
0

=

∞∑
n=0

∑∞
j=0(−1)j · ∂2n+1

∂x2n+1

(
(2kx)2j

(2j)!

) ∣∣∣∣∣
0

k!

=

∞∑
n=0

∑∞
j=0(−1)j · ∂2n+1

∂x2n+1

(
(2kx)2j

(2j)!

) ∣∣∣∣∣
0

k!



4 TA: PADRAIC BARTLETT

Because all of the terms in the inner sum have even coefficients for x, they in
particular never have degrees that match up with 2n + 1: consequently, by our
earlier observation, the 2n + 1-th derivative of x2j evaluated at 0 is always 0. As a
result, we have that

∂2n+1

∂x2n+1
(f(x))

∣∣∣∣∣
0

= 0, ∀n.

Finally, consider the even derivatives:

∂2m

∂x2m
(f(x))

∣∣∣∣∣
0

=

∞∑
n=0

∑∞
j=0(−1)j · ∂2m

∂x2m

(
(2kx)2j

(2j)!

) ∣∣∣∣∣
0

k!

=

∞∑
n=0

∑∞
j=0(−1)j · 2

2kj

(2j)! ·
∂2m

∂x2m

(
x2j
) ∣∣∣∣∣

0

k!

Recall, one last time, our earlier observation that the n-th derivative of xj evaluated
at 0 is 0, unless j = n, in which case it’s j!. This tells us that the sum

∞∑
j=0

(−1)j · 22kj

(2j)!
· ∂2m

∂x2m

(
x2j
) ∣∣∣∣∣

0

is equal to just its m-th term: i.e. that

∞∑
j=0

(−1)j · 22kj

(2j)!
· ∂2m

∂x2m

(
x2j
) ∣∣∣∣∣

0

= (−1)2m · 22mk

(2m)!
· (2m!).

Consequently, we have that

∂2m

∂x2m
(f(x))

∣∣∣∣∣
0

=
∞∑

n=0

(−1)2m ·
(

22mk

(2m)! · (2m!)
)

k!

= (−1)2m
∞∑

n=0

22km

k!

= (−1)2m
∞∑

n=0

(22m)k

k!

= (−1)2me2
2m

Consequently, we have that the Taylor series for f(x) is given by

∞∑
k=0

(−1)k
e2

2k

(2k)!
· x2k.
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Does this series converge? Well: from looking at these terms, it’s not even
clear that they’re diminishing in size! In fact, for x 6= 0, examine the ratio of two
consecutive terms:

(−1)k+1 e2
2k+2

(2k+2)! · x
2k+2

(−1)k e22k

(2k)! · x2k
= −e2

2k+2 · x2k+2 · (2k)!

e22kx2k(2k + 2)!

= − e2
2k+2−22k

x−2(2k + 1)(2k + 2)

= − e4·2
2k−22k

x−2(2k + 1)(2k + 2)

= − e3·2
2k

x−2(2k + 1)(2k + 2)
.

This clearly flies off to ±∞ as k →∞; therefore, we have that the individual terms
of our series fail to converge to 0 whenever x 6= 0. As this is a necessary condition
for a series to converge, we have thus finally shown that our series fails to converge
for any value of x 6= 0, which is exactly what we wanted to show! �

As the above example hopefully illustrates, there are occasionally functions
whose Taylor series are of little help to us at all; this is why we check to make
sure that functions have *convergent* Taylor series, and worry about things like
the remainders (which can tell us how big the gap between the function and its
Taylor series is!)

However, this is not to say that Taylor series are not useful things to study: quite
the opposite, in fact! Consider this last example as an illustration for how Taylor
series are sometimes the easiest way to set about solving a problem:

2.2. Integrating the Gaussian Function. When we examine an indefinite inte-
gral in a calculus class, there is a tendency to always assume that the integral will
be “nice.” In other words, if you were working through your Math 1 HW and were
asked to find the integral ∫

x8 − 8x + 1

x2 − 1
dx,

you would probably assume that (1) this indefinite integral exists, and furthermore
that (2) there is some “nice” way to write out what it is in terms of polynomials
and exponentials and trig things.

Given that this is Math 8, however, you’d probably assume that there was a
trap. Which is often true! Not for the above integral: that one you can solve with
partial fractions (which we’ll discuss in week 10, I think.) Consider, however, the
following indefinite integral: ∫

e−x
2/2dx.

The function e−x
2/2 is continuous and bounded on R; consequently, it is integrable,

and there is some primitive F (x) of it such that F (x) = e−x
2/2.
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Remarkably, there is no way to write this F (x) using only elementary functions.
In other words, suppose that you’re allowed to work with the polynomials, expo-
nential, trigonometric functions, and all of their inverses: and you can compose
and multiply and divide and sum as (finitely) many of these functions as you like.
There is no way that you can construct F (x) in this way; in this sense, F (x) is as
elemental as the trigonometric functions and ex.

This, as you may well imagine, makes calculating its integral over a given region
rather difficult. In fact, short of returning to our upper- and lower-sum bounds,
we really haven’t developed any machinery for tackling such a task. However, if we
merely want to find a good approximation for this integral over some region, we are
in luck! Taylor series, in particular, are remarkably useful for such a task, as we
show here:

Question 2.3. Approximate ∫ 1

−1
e−x

2/2dx

to within ±.01 of its actual value.

Proof. Well: because

Pn(ex, 0) =

n∑
k=0

xk

k!
,

we can compose −x2/2 with ex’s Taylor polynomial to get that

P2n(e−x
2/2, 0) =

n∑
k=0

(−1)k
x2k

2kk!
.

Using this, we can write

e−x
2/2 = P2n(e−x

2/2, 0) + R2n(e−x
2/2, 0),

where the P2n-part is something we can understand and the R2n-thing is something
we can make rather small!

Well, mostly. We can indeed use Taylor’s theorem to notice that for some c ∈
(0, x),

Rn(e−x
2/2, 0) =

∂n+1

∂xn+1

(
e−x

2/2
) ∣∣∣∣∣

c

(n + 1)!
xn+1;

however, as it turns out, it’s remarkably difficult to come up with a closed form for

the derivatives1 of e−x
2/2. By hand, however, it’s not too hard to calculate a few

1It is possible, though: check out the Wikipedia article on the Hermite polynomials for some
remarkable identities
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of these derivatives:

∂1

∂x1

(
e−x

2/2
)

= −x
(
e−x

2/2
)

∂2

∂x2

(
e−x

2/2
)

=
(
x2 − 1

) (
e−x

2/2
)

∂3

∂x3

(
e−x

2/2
)

=
(
−x3 + 3x

) (
e−x

2/2
)

∂4

∂x4

(
e−x

2/2
)

=
(
x4 − 6x2 + 3

) (
e−x

2/2
)

∂5

∂x5

(
e−x

2/2
)

=
(
−x5 + 10x3 − 15x

) (
e−x

2/2
)

∂6

∂x6

(
e−x

2/2
)

=
(
x6 − 15x4 + 45x2 − 15

) (
e−x

2/2
)

∂7

∂x7

(
e−x

2/2
)

=
(
−x7 + 21x5 − 105x3 + 105x

) (
e−x

2/2
)

The seventh derivative should suffice for our purposes. In this case, we have that

R6(e−x
2/2, 0) =

∂7

∂x7

(
e−x

2/2
) ∣∣∣∣∣

c

(7)!
x7

=

(
−c7 + 21c5 − 105c3 + 105c

) (
e−c

2/2
)

(7)!
x7.

Simple graphical analysis / looking at minima and maxima tells us that the poly-

nomial portion of ∂7

∂x7

(
e−x

2/2
)

is bounded by ±50 on [−1, 1]. We can then trivially

bound e−x
2/2 by 1 as well, to get that∣∣∣R6(e−x

2/2, 0)
∣∣∣ ≤ 50

(7)!
x7 =

50

5040
x7 ≤ x7

100
.

Write
∫ 1

−1 e
−x2/2dx =

∫ 1

−1 P6(e−x
2/2, 0)dx+

∫ 1

−1 R6(e−x
2/2, 0)dx. Then, we have∫ 1

−1
P6(e−x

2/2, 0)dx =

∫ 1

−1

(
1− x2

2
+

x4

8
− x6

48

)
dx

=

(
x− x3

6
+

x5

40
− x7

336

) ∣∣∣1
−1

= 2− 2

6
+

2

40
− 2

336

=
2872

1680
.
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and ∣∣∣∣∫ 1

−1
R6(e−x

2/2, 0)dx

∣∣∣∣ ≤ ∫ 1

−1

∣∣∣R6(e−x
2/2, 0)

∣∣∣ dx
≤
∫ 1

−1

∣∣∣∣ x7

100

∣∣∣∣ dx
=

∫ 1

−1

|x|7

100
dx

= 2 ·
∫ 1

0

x7

100
dx

= 2 ·
(

x8

800

) ∣∣∣1
0

= 2 ·
(

x8

800

) ∣∣∣1
0

=
1

400
.

Combining, we have that ∫ 1

−1
e−x

2/2dx =
2872

1680
,

plus or minus 1
400 . �
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