
MATH 8, SECTION 1, WEEK 7 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Monday, Nov. 15th’s lecture, where we

demonstrated a rather curious substitution.

1. Random Question

Question 1.1. A 6-sided die is exactly what you think it is: a cube with six
numbers on it, one printed on each face, such that when you roll the die each face
has the same probability (1/6) of coming up.

Can you create a pair of dice A,B with face values in N such that

• neither A nor B are equal to the standard die {1, 2, 3, 4, 5, 6}, yet
• if you roll both A and B and sum the result, the probability of getting any
number in the set {2, 3, . . . 12} is the exact same as if you had rolled two
standard dice and summed their results?

2. A Curious Substitution: The Development

So: often, when we’re integrating things, we often come up across expressions
like ∫ π

0

1

1 + sin(θ)
dθ, or

∫ π/4

−π/4

1

cos(θ)
dθ,

where there’s no immediately obvious way to set up the integral. Sometimes, we
can be particuarly clever, and notice some algebraic trick: for example, last Friday
we used the observation that

1

cos(θ)
=

cos(θ)

cos2(θ)

=
cos(θ)

1− sin2(θ)

=
1

2

(
cos(θ)

1− sin(θ)
+

cos(θ)

1 + sin(θ)

)
,

in order to integrate sec(θ).
Relying on being clever all the time, however, is not usually a winning strategy:

it would be nice if we could come up with some way of methodically studying
such integrals above – specifically, of working with integrals that feature a lot of
trigonometric identities! Is there a way to do this?

As it turns out: yes! Specifically, consider the use of the following function as a
substitution:

g(x) = 2 arctan(x),

1
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where arctan(x) is the inverse function to tan(x), and is a function R→ (π/2, π/2).
In class, we showed that such inverse functions of differentiable functions are dif-
ferentiable themselves: consequently, we can use the chain rule and the definition
of the inverse to see that

(tan(arctan(x))′ = (x)′ = 1, and

(tan(arctan(x))′ = tan′(arctan(x)) · (arctan(x))′ =
1

cos2(arctan(x))
· (arctan(x))′

⇒ 1

cos2(arctan(x))
· (arctan(x))′ = 1

⇒(arctan(x))′ = cos2(arctan(x)).

Then, if we remember how the trigonometric functions were defined, we can see
that (via the below triangles)

x

tan(x)

1

arctan(x)

x√1+x²

1

√1+tan²(x)

we have that

(arctan(x))′ = cos2(arctan(x)) =
1

1 + x2

and thus that

g′(x) =
2

1 + x2
.

As well: by using the above triangles, notice that

sin(g(x)) = sin(2 arctan(x))

= 2 sin(arctan(x)) cos(arctan(x)

= 2 · 1√
1 + x2

· x√
1 + x2

=
2x

1 + x2
,
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and

cos(g(x)) = cos(2 arctan(x))

= 2 cos2(arctan(x))− 1

=
2

1 + x2
− 1

=
1− x2

1 + x2
.

Finally, note that trivially we have that

g−1(x) = tan(x/2),

by definition.
What does this all mean? Well: suppose we have some function f(x) where all

of its terms are trig functions – i.e. f(x) = 1
1+sin(x) , or f(x) = 1

cos(x) – and we make

the substiution

∫ b

a

f(x) =

∫ g−1(b)

g−1(a)

f(g(x))g′(x).

What do we know about the integral on the right? Well: as we’ve just shown above,
the substitution of g(x) turns all of the sin(x)’s into sin(g(x))’s, which are just
reciprocals of polynomials; similarly, we’ve turned all of the cos(x)’s into cos(g(x))’s,
which are also made of polynomials. In other words, this substitution turns a
function that’s made entirely out of trig functions into one that’s made only out
of polynomials! – i.e. it turns trig functions into quadratic polynomials! This is
excellent for us, because (as you may have noticed) it’s often far easier to integrate
polynomials than trig functions.

This substitution is probably one of those things that’s perhaps clearer in its use
than its explanation. Consequently, we have several examples in the next section
to illustrate how this substitution is used:

3. A Curious Substitution: Some Examples of its Use

Example 3.1. Find the integral

∫ π/2

0

1

1 + sin(x)
dx.
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Proof. So: without thinking, let’s just try our substitution, where f(x) = 1
1+sin(x) :∫ π/2

0

1

1 + sin(x)
dx =

∫ g−1(π/2)

g−1(0)

f(g(x))g′(x)dx

=

∫ tan(pi/4)

tan(0)

1

1 + 2x
1+x2

· 2

1 + x2
dx

=

∫ 1

0

2

1 + x2 + 2x
dx

=

∫ 1

0

2

(1 + x)2
dx

=

∫ 2

1

2

x2
dx

= − 2

x

∣∣∣∣∣
2

1

= 1/2.

. . . so it works! Without any effort, we were able to just mechanically calculate an
integral that otherwise looked nigh-impossible. Neat! �

Example 3.2. Find the integral∫ π/4

−π/4

1

cos(x)
dx.

Proof. Let’s try just using our substitution again, where f(x) = 1
cos(x) :∫ π/4

−π/4

1

cos(x)
dx =

∫ g−1(π/4)

g−1(−π/4)
f(g(x))g′(x)dx

=

∫ tan(π/8)

tan(−π/8)

1
1−x2

1+x2

· 2

1 + x2
dx

=

∫ √2−1

1−
√
2

2

1− x2
dx

=

∫ √2−1

1−
√
2

2

(1− x)(1 + x)
dx

=

∫ √2−1

1−
√
2

(
1

1− x
+

1

1 + x

)
dx

=

∫ √2−1

1−
√
2

1

1− x
dx+

∫ √2−1

1−
√
2

1

1 + x
dx,

where the trick between the fourth and fifth lines was using partial fractions to
simplify the fraction.
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Now, use the two u-substitutions u = 1 − x and u = 1 + x on the above two
fractions to see that

∫ π/4

−π/4

1

cos(x)
dx =

∫ √2−1

1−
√
2

1

1− x
dx+

∫ √2−1

1−
√
2

1

1 + x
dx

=

∫ 2−
√
2

√
2

− 1

u
du+

∫ √2

2−
√
2

1

u
du

=

∫ √2

2−
√
2

1

u
du+

∫ √2

2−
√
2

1

u
du

= 2

∫ √2

2−
√
2

1

u
du

= 2 ln(u)
∣∣∣√2

2−
√
2

= 2 ln(
√

2)− 2 ln(2−
√

2)

= ln

(
2

(2−
√

2)2

)
= ln

(
2 +
√

2

2−
√

2

)

= ln

(
1 +
√

2/2

1−
√

2/2

)
,

which agrees exactly with our answer from Friday, and required no clever algebraic
tricks to discover! (Well, no clever tricks beyond our useful substitution.) �

However, it bears noting that this substitution is not a miracle worker; there are
many functions whose integrals it will not simplify, and indeed some functions which
it will make much more complicated. For these reasons, consider it a substitution
of “last resort” – if you can’t think of anything else to try, go for it, but be aware
that it can make some simple integrals far more complex than they need be (as we
will see in our last example:)

Example 3.3. Find the integral

∫ π/2

0

sin2(x)dx.
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Proof. Suppose that we have forgotten all about the double-angle formula, and just
wanted to blindly apply our formula: then, for f(x) = sin2(x), we would have∫ π/2

0

sin2(x)dx =

∫ g−1(π/4)

g−1(0)

f(g(x))g′(x)dx

=

∫ 1

0

(
2x

1 + x2

)
· 2

1 + x2
dx

=

∫ 1

0

8x2

(1 + x2)3
dx,

which is arguably a much more awful thing to study! As it turns out, we can
integrate it via partial fractions:∫ 1

0

8x2

(1 + x2)3
dx =

∫ 1

0

(
8

(1 + x2)2
− 8

(1 + x2)3

)
dx

=

∫ 1

0

(
8

(1 + x2)2
− 8

(1 + x2)3

)
dx,

which we can calculate via the u-substitution x = tan(u), dx = 1
cos2(x) :∫ 1

0

(
8

(1 + x2)2
− 8

(1 + x2)3

)
dx

=

∫ π/4

0

(
8

(1 + tan2(u))2
· 1

cos2(u)
− 8

(1 + tan2(u))3
· 1

cos2(u)

)
du

=

∫ π/4

0

(
8

cos−4(u)
· 1

cos2(u)
− 8

cos−6(u)
· 1

cos2(u)

)
du

=

∫ π/4

0

(
8 cos2(u)− 8 cos4(u)

)
du

=

∫ π/4

0

(
4 + 4 cos(2u)− 2(1 + cos(2u))2

)
du

=

∫ π/4

0

(
4 + 4 cos(2u))− 2− 4 cos(2u)− 2 cos2(2u)

)
du

=

∫ π/4

0

(2− 1− cos(4u)) du

=

(
u− sin(4u)

4

) ∣∣∣∣∣
π/4

0

=π/4.

Just to check, this does agree completely with the far easier method of just using
the double-angle formula:∫ π/2

0

sin2(x)dx =

∫ π/2

0

1− cos(2x)

2
dx =

x

2
− cos(2x)

4

∣∣∣∣∣
π/2

0

= π/4.
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So: yeah, sometimes this method is a really bad idea. But sometimes (as in the
two earlier examples) it’s awesome! So don’t be afraid to use it, but keep in mind
that it’s not a panacea; there are many many things that it will not help with. But
some things that it will! �
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