
MATH 8, SECTION 1, WEEK 8 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Friday, Nov. 19th’s lecture. In this talk,

we discuss the integral test.

1. Random Question

Question 1.1. Consider the following game you can play on a n × n board made
of 1× 1 squares:

(1) To start, mark some of the squares on the board as “infected.”
(2) If a square shares edges with at least two infected squares, mark it as infected

as well.
(3) Repeat (2) until no more squares are ever marked.

How many squares do you need to infect at the start to insure that the whole board
is eventually infected? Can you prove that your number is the smallest number
needed?

2. The Integral Test: Statement

Today’s lecture is fairly brief, as Math 1a’s lecture today was shorter than normal.
Here, we discuss the integral test, which says the following:

Theorem 2.1. (Integral test:) If f(x) is a positive and monotonically decreasing
function, then

∞∑
n=N

f(n) converges if and only if

∫ ∞
N

f(x)dx converges.

It bears noting that the conditions “positive and monotonically decreasing” are
extremely necessary in the above definition: if you examine functions that aren’t
monotonically decreasing, you can run into things like

f(x) =

{
x, x ∈ N
0, otherwise

which has the unfortunate property that

∞∑
n=N

f(n) =

∞∑
n=N

n =∞

while ∫ ∞
N

f(x)dx = 0.

To illustrate this theorem’s use, we turn to some examples:
1
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3. The Integral Test: Examples

Question 3.1. Does the series

∞∑
n=1

ne−n
2

converge?

Proof. First, notice that because(
xe−x

2
)′

= e−x
2

− 2x2e−x
2

= (1− 2x2)e−x
2

< 0,∀x > 1,

we know that this function is decreasing on all of [1,∞). As well, it is trivially
positive on [1,∞): so we can apply the integral test to see that this series converges
iff the integral ∫ ∞

n=1

xe−x
2

dx

converges.
But this is not too hard to show! – by using the u-substitution u = x2, we have

that ∫ ∞
n=1

xe−x
2

dx =

∫ ∞
1

e−u

2
du = −e−u

2

∣∣∣∣∣
∞

1

=
e

2
,

and that in particular this integral converges. Therefore

∞∑
n=1

ne−n
2

must convege as well. �

Question 3.2. Does the series

∞∑
n=3

1

(ln(n))ln(ln(n))

converge?

Proof. First, notice that because ln(x) is an increasing function, so is (ln(x))ln(ln(x));
consequently, 1

(ln(x))ln(ln(x)) is a decreasing function on [3,∞). As well, because ln(x)

is positive whenever x > 1, we know that this function is positive on [3,∞): so we
can apply the integral test to see that our sum converges iff the integral∫ ∞

n=3

1

(ln(x))ln(ln(x))
dx

converges.
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So: perform the u-substitution u = ln(x), x = eu, dx = eudu to see that∫ ∞
n=3

1

(ln(x))ln(ln(x))
dx =

∫ ∞
n=3

1

uln(u)
· eudu

=

∫ ∞
n=3

1

e(ln(u))2
· eudu

=

∫ ∞
n=3

eu−(ln(u))
2

du.

Finally, because

lim
u→∞

u− (ln(u))2 =∞,

we know that eu−(ln(u))
2

increases without bound, and thus its integral cannot
converge. So our sum does not converge, as well. �

Sometimes the integral test itself may not be applicable, but the idea of relating
integrals and sums can still be used to show something converges! To see an example
of this, look at our last problem:

Question 3.3. Does the sum
∞∑

n=1

1

n1+1/n

converge?

Proof. No. To see why, simply notice that for any k > 1 ∈ N,
∞∑

n=1

1

n1+1/n
≥
∞∑

n=k

1

n1+1/n

≥
∞∑

n=k

1

n1+1/k

Now, notice that because 1
x1+1/k is a decreasing function, we know that the sum∑∞

n=k
1

n1+1/k is strictly larger than the integral
∫∞
k

1
x1+1/k dx; consequently, we have

∞∑
n=1

1

n1+1/n
≥
∫ ∞
k

1

x1+1/k
dx

=
1

x1/k
· (−k)

∣∣∣∣∣
∞

k

=0− −k
k1/k

=kk−1/k

≥
√
k,∀k > 2.
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Thus, we have that
∞∑

n=1

1

n1+1/n
≥
√
k, ∀k > 2;

consequently, this sum must diverge. �
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