
MATH 8, SECTION 1, WEEK 7 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Wednesday, Nov. 10rd’s lecture, where

we discussed integration by parts and integration by substitution.

1. Random Question

Question 1.1. Can you color the plane with the seven colors {R,O, Y,G,B, I, V }
– i.e. assign one of the colors {R,O, Y,G,B, I, V } to every point in R2 – in such
a way that any two points in the plane with the same color are never distance 1
apart?

2. Methods of Integration: Statements and Philosophy

In our last class, we discussed the two fundamental theorems of calculus, which
(roughly speaking) said that integration and derivation were “inverse” operations
to one another. A natural question to ask, then, is the following:

Motivating Question 2.1. For derivation, we had two central tools:

• the chain rule: i.e. for differentiable f, g, we have (f(g(x))′ = f ′(g(x)) ·
g′(x).
• the product rule: i.e. for differentiable f, g, we have (f(x) · g(x))′ =
f ′(x)g(x) + g′(x)f(x).

If we apply the fundamental theorems of calculus to these two rules, will we get a
pair of “integral” theorems as well?

As it turns out: yes! Consider the following two theorems, which are direct
consequences of the fundamental theorems of calculus and the chain/product rules:

Theorem 2.2. (Integration by Parts – i.e. the “integral product rule:”) If f, g are
a pair of C1 functions on [a, b] – i.e they have continuous derivatives on [a, b] –
then we have ∫ b

a

f(x)g′(x) = f(x)g(x)
∣∣∣b
a

=

∫ b

a

f ′(x)g(x)dx

Theorem 2.3. (Integration by Substitution – i.e. the “integral chain rule:”) If f
is a continuous function on g([a, b]) and g is a C1 functions on [a, b], then we have∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(x)dx.

To illustrate how these two theorems are used, we work a series of examples:
1
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3. Methods of Integration: Examples

Question 3.1. What’s

∫ 2

1

x2exdx ?

Proof. Looking at this problem, it doesn’t seem like a substitution will be terribly
useful: so, let’s try to use integration by parts!

How do these kinds of proofs work? Well: what we want to do is look at
the quantity we’re integrating (in this case, x2ex,) and try to divide it into two
parts – a “f(x)”-part and a “g′(x)” part – such that when we apply the relation∫
f(x)g′(x) = f(x)g(x)−

∫
g(x)f ′(x), our expression gets simpler!

To ensure that our expression does in fact get simpler, we want to select our
f(x) and g′(x) such that

(1) we can calculate the derivative f ′(x) of f(x) and find a primitive g(x) of
g′(x), so that either

(2) the derivative f ′(x) of f(x) is simpler than the expression f(x), or
(3) the integral g(x) of g′(x) is simpler than the expression g′(x).

So: often, this means that you’ll want to put quantities like polynomials or ln(x)’s
in the f(x) spot, because taking derivatives of these things generally simplifies
them. Conversely, things like ex’s or trig functions whose integrals you know are
good choices for the integral spot, as they’ll not get much more complex and their
derivatives are generally no simpler.

Specifically: what should we choose here? Well, the integral of ex is a particularly
easy thing to calculate, as it’s just ex. As well, x2 becomes much simpler after
repeated derivation: consequently, we want to make the choices

f(x) = x2 g′(x) = ex

f ′(x) = 2x g(x) = ex,

which then gives us that

∫ 2

1

x2exdx = f(x)g(x)
∣∣∣2
1
−
∫ 2

1

f ′(x)g(x)dx

= x2ex
∣∣∣2
1
−
∫ 2

1

2xexdx.

Another integral! Motivated by the same reasons as before, we attack this inte-
gral with integration by parts as well, setting

f(x) = 2x g′(x) = ex

f ′(x) = 2 g(x) = ex.
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This then tells us that∫ 2

1

x2exdx = x2ex
∣∣∣2
1
−
∫ 2

1

2xexdx

= x2ex
∣∣∣2
1
−
(
f(x)g(x)

∣∣∣2
1
−
∫ 2

1

f ′(x)g(x)dx

)
= x2ex

∣∣∣2
1
−
(

2xex
∣∣∣2
1
−
∫ 2

1

2exdx

)
= x2ex

∣∣∣2
1
−
(

2xex
∣∣∣2
1
− 2ex

∣∣∣2
1

)
= 4e2 − e1 −

(
4e2 − 2e1 − 2e2 + 2e1

)
= 2e2 − e1.

So we’re done! �

Question 3.2. What is ∫ 2

0

x2 sin(x3)dx ?

Proof. How do we calculate such an integral? Direct methods seem unpromising,
and using trig identities seems completely insane. What happens if we try substi-
tution?

Well: our first question is the following: what should we pick? This is the
only “hard” part about integration by substitution – making the right choice on
what to substitute in. In most cases, what you want to do is to find the part of the
integral that you don’t know how to deal with – i.e. some sort of “obstruction.”
Then, try to make a substitution that (1) will remove that obstruction, usually
such that (2) the derivative of this substitution is somewhere in your formula.

Here, for example, the term sin(x3) is definitely an “obstruction” – we haven’t
developed any techniques for how to directly integrate such things. So, we make
a substitution to make this simpler! In specific: Let u = x3. This turns our
term sin(x3) into a sin(u), which is much easier to deal with Also, the derivative
du = 3x2dx is (up to a constant) being multiplied by our original formula – so this
substitution seems quite promising. In fact, if we calculate, we have that∫ 2

0

x2 sin(x3)dx =

∫ 2

0

sin(x3) · 1

3
· 3x2dx =

∫ 8

0

sin(u) · 1

3
· du

which is an integral we *can* calculate (it’s sin(8)
3 .)

(Note that when we made our substitution, we also changed the bounds! Please,
please, always change your bounds when you make a substitution!) �

Question 3.3. What is ∫ 2

1

ln(x))dx ?

Proof. At first glance, this looks unapproachable with either method that we know:
there’s only one term in there, and all of our methods depend on splitting things
up into two terms!
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. . . or is there only one term? Well: if you think of ln(x) as 1 · ln(x), then we can
actually do something! Specifically, we want to take a derivatie of ln(x), to make
it simpler: so we pick

f(x) = ln(x) g′(x) = 1
f ′(x) = 1/x g(x) = x,

which then gives us that∫ 2

1

ln(x))dx = x ln(x)
∣∣∣2
1
−
∫ 2

1

x · (1/x)dx

= x ln(x)
∣∣∣2
1
− x
∣∣∣2
1

= 2 ln(2)− 2.

�

Question 3.4. What is ∫ 1

0

(
x2 + 1

)−3/2
?

Proof. Again, at first glance, this looks unapproachable: there’s still only one term
in there, and the trick from last time clearly won’t work. So what can we do?

Well: what if we tried substitution, but put something in as opposed to taking
something out? I.e. in our earlier substitution proof, we started with an expression
in the form ∫ b

a

f(g(x))g′(x)dx

and turned it into one of the form∫ g(b)

g(a)

f(x)dx.

What if we try going the other way around? I.e.: we could use the fact that,

while
(
x2 + 1

)−3/2
is a rather complicated thing,

(
tan2(x) + 1

)−3/2
=

(
sin2(x)

cos2(x)
+ 1

)−3/2
=

(
sin2(x) + cos2(x)

cos2(x)

)−3/2
=

(
1

cos2(x)

)−3/2
= cos3(x)

really isn’t!
Specifically: if we let
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f(x) =
(
x2 + 1

)−3/2
, g(x) = tan(x),

g′(x) = 1
cos2(x) ,

we have that ∫ 1

0

(
x2 + 1

)−3/2
dx =

∫ 1

0

f(x)dx

=

∫ tan−1(1)

tan−1(0)

f(g(x))g′(x)dx

=

∫ π/4

0

cos3(x) · 1

cos2(x)
dx

=

∫ π/4

0

cos(x)dx

= sin(x)
∣∣∣π/4
0

dx

=
√

2/2.
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