
MATH 8, SECTION 1, WEEK 7 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Friday, Nov. 12th’s lecture. In this talk,

we discuss how to integrate polar and parametric equations.

1. Random Question

Question 1.1. You’ve been teleported back in time to ancient Rome, where (ac-
cording to the fashion) you’ve been thrown into a gladiatorial pit. The pit is a
perfect square, which you’re in the exact center of: furthermore, at each of the four
vertices of the square, there’s a lion.

The lions are restrained by chains so that they can only walk along the perimeter
of the square: as well, both you and the lions

• run at the same speed,
• are point-masses that can change direction arbitrarily quickly,
• are arbitrarily brilliant and can execute any given strategy, and
• know no fear.

Can you escape the square – i.e. is there a strategy you can adopt that will always
allow you to run out of the square without being devoured? What about other regular
polygons: which of those can you escape? How?

(you)

(lion) (lion)

(lion) (lion)

2. Polar Coördinates and Integration: Theory

Typically, when we discuss points in the plane, we use Cartesian coördinates,
where we refer to a point in the plane as a pair (x, y), where x denotes its horizontal
location alon the x-axis and y denotes its vertical location along the y-axis.
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(x,y)

x

y

This, however, is not the only way to label the points in the plane! Specifically,
another choice of coördinates you could make is that of the polar coördinate
system, where we label every point in the plane as a pair (r, θ), where r denotes the
distance of this point from the origin and θ denotes the angle made by the positive
x-axis and the vector represented by our point, measured counterclockwise:

(r,θ)

θ

r

In this fashion, we can imagine the plane as the collection of all pairs of points
[0, 2π) × R+, and can study the graphs of functions f(θ) that map various angles
to radial values. One immediate goal we might have, then, is the following: can we
integrate these functions?

Well: for cartesian-coördinate-functions, we started by integrating step functions
and used this to develop a theory of integration for the other functions. Can we do
the same here?

First, let’s say what a polar step function is:

Definition 2.1. A polar step function is a map f : [a, b] → R with a partition
a = t0 < t1 < . . . tn = b of [a, b], such that f is constant on each of the open
intervals (ti−1, ti).
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What is the area bounded by such a function? Well: first, recall that the area

of a (b − a)-radian “wedge” of a circle with radius r is just r2 · (b−a)2 , as it’s just
b−a
2π -th of a circle with area πr2.

b

a

r A

Consequently, for a polar step function ϕ, we can say that the area radially
bounded above by ϕ over [a, b] is

area(ϕ, [a, b]) =

n∑
i=1

(
value(ti−1,t1)(ϕ(θ))

)2 · (ti−1, ti)

2

But this expression is just the “normal” integral – i.e. integral of ϕ as treated as a
cartesian-coordinate-function– of (ϕ(θ))2/2: i.e.

area(ϕ, [a, b]) =

∫ b

a

ϕ(θ))2

2
dθ.

Does this formula hold in general? As it turns out, yes! Specifically, let’s formally
define the area radially bounded by a polar function as the following:

Definition 2.2. The area radially bounded above by a given polar function f on
some interval [a, b] is well-defined if and only if there are polar step functions Ln, Un
such that

• Ln(θ) ≤ f(θ) ≤ Un(θ), for all θ ∈ [a, b]
• limn→∞ area(Ln, [a, b]) = limn→∞ area(Un, [a, b]).
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In this case, we define

area(f, [a, b]) = lim
n→∞

area(Ln, [a, b]) = lim
n→∞

area(Un, [a, b]).

Proposition 2.3. If f is a polar function such that area(f, [a, b]) is well-defined,
then

area(f, [a, b]) =

∫ b

a

(f(θ))2

2
dθ.

Proof. Take any such polar function f , and its associated lower and upper-bound-
step functions Ln, Un. Then, by definition, notice that we have

lim
n→∞

area(Ln, [a, b]) = lim
n→∞

area(Un, [a, b]).

⇒ lim
n→∞

∫ b

a

(Ln(θ))2

2
dθ = lim

n→∞

∫ b

a

(Un(θ))2

2
dθ,

for some collection of lower and upper-bound step functions. But, because Ln ≤
f ≤ Un, the definition of the normal integral tells us that∫ b

a

(f(θ))2

2
dθ

exists and is equal to both of the above limits! Consequently, we have that

area(f, [a, b]) =

∫ b

a

(f(θ))2

2
dθ,

as claimed �

3. Polar Coördinates and Integration: Examples

To illustrate how these formulas are used, we work a few examples here.

Example 3.1. Find the area contained by the polar rose

f(θ) = cos(5θ)

over the domain [0, π].
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Proof. By our above formula, we know that

area(rose) =

∫ π

0

cos2(5θ)

2
dθ

=

∫ π

0

1 + cos(10θ)

4
dθ (double-angle formula)

=
10θ + sin(10θ)

40

∣∣∣∣∣
π

0

=
10π + 0

40
− 10 · 0 + 0

40
= π/4.

�

Example 3.2. Find the area contained within the “butterfly curve”

f(θ) = 1 + cos(4θ) + sin(2θ)

over the domain [0, 2π).

Proof. Again, we simply use our earlier formula and calculate, liberally using the
double-angle formulas:

area(butterfly) =

∫ 2π

0

(1 + cos(4θ + sin(2θ))2

2
dθ

=
1

2

∫ 2π

0

(
1 + cos2(4θ) + sin2(2θ) + 2 cos(4θ) + 2 sin(2θ) + 2 cos(4θ) sin(2θ)

)
dθ

=
1

2

∫ 2π

0

(
1 +

1 + cos(8θ)

2
+

1− cos(4θ)

2
+ 2 cos(4θ) + 2 sin(2θ) + 2

(
2 cos2(2θ)− 1

)
sin(2θ)

)
dθ

=

(
θ

2
+

8θ + sin(8θ)

32
+

4− sin(4θ)

16
+

sin(4θ)

4
− cos(2θ)

2

) ∣∣∣∣∣
2π

0

+

∫ 2π

0

((
2 cos2(2θ)− 1

)
sin(2θ)

)
dθ

= 2π +

∫ 2π

0

((
2 cos2(θ)− 1

)
sin(2θ)

)
dθ.
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Finally, to evaluate the last integral, perform a u-substitution with u = cos(2θ), u′ =
2 sin(2θ):

area(butterfly) = 2π +

∫ 2π

0

((
2 cos2(θ)− 1

)
sin(2θ)

)
dθ

= 2π +

∫ cos(4π)

cos(0)

2u2 − 1

2
du

= 2π +

∫ 1

1

2u2 − 1

2
du

= 2π.

�

Example 3.3. Find the area bounded by the curve

f(θ) =
1√

cos(θ)

over the domain [−π/4, π/4].

Proof. Once again, we simply apply our above formula:

area(f, [−π/4, π/4]) =

∫ π/4

−π/4

1

2 cos(θ)
dθ.

How can we calculate this kind of integral? Well: as it’s currently written, neither
integration by parts nor integration by substitution seem to have any chance of
working. However, if we try some algebra first, we can see that

1

2 cos(θ)
=

1

2

cos(θ)

cos2(θ)

=
1

2

cos(θ)

1− sin2(θ)

=
1

4

(
cos(θ)

1− sin(θ)
+

cos(θ)

1 + sin(θ)

)
,
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which we *can* integrate via substitution! Specifically, we have

area(f, [−π/4, π/4]) =

∫ π/4

−π/4

1

2 cos(θ)
dθ

=

∫ π/4

−π/4

1

4

(
cos(θ)

1− sin(θ)
+

cos(θ)

1 + sin(θ)

)
dθ

=

∫ π/4

−π/4

1

4
· cos(θ)

1− sin(θ)
dθ +

∫ π/4

−π/4

1

4
· cos(θ)

1 + sin(θ)
dθ.

Now, use the u-subsitution u = 1− sin(θ) in the first integral and u = 1 + sin(θ) in
the second: ∫ π/4

−π/4

1

4
· cos(θ)

1− sin(θ)
dθ +

∫ π/4

−π/4

1

4
· cos(θ)

1 + sin(θ)
dθ

=

∫ 1−sin(π/4)

1−sin(−π/4)
−1 · 1

4
· 1

u
du+

∫ 1+sin(π/4)

1+sin(−π/4)

1

4
· 1

u
du

=

∫ 1−
√
2/2

1+
√
2/2

−1 · 1

4
· 1

u
du+

∫ 1+
√
2/2

1−
√
2/2

1

4
· 1

u
du

=

∫ 1+
√
2/2

1−
√
2/2

1

4
· 1

u
du+

∫ 1+
√
2/2

1−
√
2/2

1

4
· 1

u
du

= 2

∫ 1+
√
2/2

1−
√
2/2

1

4
· 1

u
du

=
1

2
ln(u)

∣∣∣∣∣
1+
√
2/2

1−
√
2/2

=
1

2

(
ln
(

1 +
√

2/2
)
− ln

(
1−
√

2/2
))

=
1

2
ln

(
1 +
√

2/2

1−
√

2/2

)

�

4. Parametrization and Integration: Theory

As we’ve discussed above, there are ways to draw curves in R2 other than using
Cartesian coördinates: polar coördinates, as we’ve just discussed, provide a re-
markably useful way to create simple curves. Are there other methods for drawing
curves, that might perhaps also come in handy?

As it turns out, yes! Specifically, to draw a curve c in the plane, it suffices to offer
a pair of functions x(t) and y(t) : R→ R, and look at the graph of c(t) = (x(t), y(t))
on some interval [a, b]. For example, if we let

x(t) = t,

y(t) = t2,



8 TA: PADRAIC BARTLETT

we get the graph of the parabola sketched below:

The arrows above indicate the path of the curve as t increases: i.e. small increases
in the value of t follow the arrows drawn on the graph above.

Another example is the unit circle, given by the curve

x(t) = cos(t),

y(t) = sin(t),

on the interval [0, 2π):

here, the curve starts at (1, 0) and spirals counterclockwise, as drawn.
This process of describing a curve by a pair of equations is known as parametriza-

tion. A natural question to ask, then, is the following: can we come up with an
expression for the “area” beneath a parametrized curve?

So: one idea we could use is the following:

Definition 4.1. For a parametric curve c(t) = (x(t), y(t)), we say that the area
beneath c(t) on some interval [a, b] is well-defined if and only if for every increasingly
fine1 set of partitions Pn of [a, b], we have that

lim
n→∞

(∑
Pn

sup
(ti−1,ti)

(y(t)) · (x(ti)− x(ti−1))

)
= lim
n→∞

(∑
Pn

inf
(ti−1,ti)

(y(t)) · (x(ti)− x(ti−1))

)
.

1A set of partitions is called increasingly fine if for every ε > 0, there’s a N so that for any

n > N , we have that all of the distances ti − ti−1 are < ε in the partition Pn = t0 < . . . < tn. In

other words, increasingly fine partitions have arbitrarily tiny step sizes.
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Pictorially, this just means that for any collection of incrasingly fine partitions
Pn, the area of the red rectangles below (upper sums) converges to the area of the
blue rectangles below (lower sums):

0) 1) 2)

3)5) 4)

x(t   x(t   x(t   

x(t   x(t   x(t   

0) 1) 2)

3)5) 4)

x(t   x(t   x(t   

x(t   x(t   x(t   

Given this definition, we can make the following observation:

Proposition 4.2. If c(t) = (x(t), y(t)) is a parametrized curve such that the area
beneath c(t) on some interval [a, b] is well-defined, y(t) is continuous and bounded
on [a, b], and x(t) is C1 and bounded with bounded derivative on[a, b], then

area(c(t), [a, b]) =

∫ b

a

y(t)x′(t)dt.
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Proof. By definition, we know that there are increasingly fine partitions Pn of [a, b]
such that

lim
n→∞

(∑
Pn

sup
(ti−1,ti)

(y(t)) · (x(ti)− x(ti−1))

)
= lim
n→∞

(∑
Pn

inf
(ti−1,ti)

(y(t)) · (x(ti)− x(ti−1))

)
.

First: notice that we can rewrite

(x(ti)− x(ti−1)) =
(x(ti)− x(ti−1))

(ti − ti−1)
· (ti − ti−1),

where the right-hand side looks a lot like the derivative of x times the length of
(ti−1, ti). Specifically, we know that by the mean value theorem, there is some
ci ∈ (ti−1, ti) such that

(x(ti)− x(ti−1)) = x′(ci) · (ti − ti−1).

Furthermore, notice that we always have

inf
(ti−1,ti)

(y(t))x′(ci) · (ti − ti−1) ≤ y(ci) · x′(ci) · (ti − ti−1) ≤ sup
(ti−1,ti)

(y(t))x′(ci) · (ti − ti−1) :

consequently, if we apply the squeeze theorem to the inf and sup limits above, we
can see that both of these limits must also be equal to the limit

lim
n→∞

(∑
Pn

y(ci) · x′(ci) · (ti − ti−1)

)
.

But we also know that this limit is equal to the integral of y(t)x′(t) from a to b,
as it lies between the inf and sup sums for that function as well (and the integral
y(t)x′(t) exists because both functions are continuous and bounded on [a, b].)

Thus, we have

area(c(t), [a, b]) =

∫ b

a

y(t)x′(t)dt,

as claimed. �

The next section features several examples of how this formula works, and several
caveats about its use:

5. Parametrization and Integration: Examples

Example 5.1. Find the unsigned area enclosed by the unit circle

c(t) = (cos(t), sin(t)) .
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Proof. If we apply this formula in a straightforward manner, we get

area(c(t), [0, 2π]) =

∫ 2π

0

sin(t) · (− sin(t))dt

= −
∫ 2π

0

sin2(t)dt

= −
∫ 2π

0

cos(2t)− 1

2
dt

=
sin(2t)− 2t

4

∣∣∣∣∣
2π

0

= −π.

. . . wait. Where did that minus sign come from?
First: remember that our integrals are computing, typically, an idea of “signed

area:” i.e. area beneath the x-axis is typically counted negatively, whereas area
above the x-axis is counted positively. Well, as it turns out, the orientation of our
parametrized curve *also* affects the sign of the area! Specifically, parametrized
area is counted negatively when the curve’s x-coördinates are decreasing, and posi-
tively when the curve’s x-coördinates are increasing: you can see this in the deriva-
tion of our formula for the area of a parametric curve, as the sign of the sum

lim
n→∞

(∑
Pn

sup
(ti−1,ti)

(y(t)) · (x(ti)− x(ti−1))

)

depends both on the sign of y(t) and of (x(ti)− x(ti−1)). So the curve above has
*signed*area −π, but *unsigned* area π! This will become much more interesting
in the next example: �

Example 5.2. Find the unsigned area enclosed by the ellipse negative pedal curve
(“fish curve”)

c(t) =

(
cos(t)− sin2(t)√

2
, cos(t) sin(t)

)
.
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Proof. If we calculate naively, we have that

area(c(t), [0, 2π]) =

∫ 2π

0

cos(t) sin(t) ·
(
− sin(t)− 2 sin(t) cos(t)√

2

)
dt

=

∫ 2π

0

(
− cos(t) sin2(t)− 2 sin2(t) cos2(t)√

2

)
dt

=

∫ 2π

0

(
− cos(t) sin2(t)− sin2(2t)

2
√

2

)
dt

=

∫ 2π

0

(
− cos(t) sin2(t)− 1− cos(4t)

4
√

2

)
dt

=

∫ 2π

0

− cos(t) sin2(t)dt−
∫ 2π

0

1− cos(4t)

4
√

2
dt

Using the simple u-substitution u = sin(t) on the left integral and simply calculating
for the right integral gives us that

area(c(t), [0, 2π]) =

∫ 2π

0

− cos(t) sin2(t)dt−
∫ 2π

0

1− cos(4t)

4
√

2
dt

=

∫ sin(2π)

sin(0)

−u2du−
∫ 2π

0

1− cos(4t)

4
√

2
dt

= −u
3

3

∣∣∣∣∣
sin(2π)

sin(0)

− 4t− sin(4t)

16
√

2

∣∣∣∣∣
2π

0

which evaluates to

= −u
3

3

∣∣∣∣∣
0

0

− 4t− sin(4t)

16
√

2

∣∣∣∣∣
2π

0

=
−π
2
√

2
.

You might think that this is the area of the above curve, just “signed negatively”
because of the way that the curve is oriented: but is it?

No! In fact, if you examine the orientation of our curve, it turns out that our
integral above has subtracted the area of the tail (which gets a positive sign due
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to the way that we traversed the curve) from the area of the body (which got a
negative sign, again b/c of our curve’s orientation.) So, to get the *real* area, what
we should do is *sum* the area of the tail and the area of the body. To do this,
we simply calculate each area separately, using the fact that the body is just our
curve ran on [−π/2, π/2] and that the tail is our curve ran from π/2, 3π/2]:

area(head) = −u
3

3

∣∣∣∣∣
sin(π/2)

sin(−π/2)

− 4t− sin(4t)

16
√

2

∣∣∣∣∣
π/2

−π/2

= −u
3

3

∣∣∣∣∣
1

−1

− 4t− sin(4t)

16
√

2

∣∣∣∣∣
π/2

−π/2

= −2

3
− π

4
√

2

area(tail) = −u
3

3

∣∣∣∣∣
sin(3π/2)

sin(π/2)

− 4t− sin(4t)

16
√

2

∣∣∣∣∣
3π/2

π/2

= −u
3

3

∣∣∣∣∣
−1

1

− 4t− sin(4t)

16
√

2

∣∣∣∣∣
3π/2

π/2

=
2

3
− π

4
√

2

Taking absolute values of the head and tail and then summing tells us that

area(fish) = |area(head)|+ |area(tail)|

=
2

3
+

π

4
√

2
+

2

3
− π

4
√

2

=
4

3
,

which is in fact the actual area enclosed by our fish curve. �
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We leave the last problem here as an exercise to the reader:

Example 5.3. Find the area enclosed by the Lissajous curve

c(t) = (sin(3t+ π/4), sin(t)) .

Proof. �
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