MATH 8, SECTION 1, WEEK 6 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract

These are the notes from Wednesday, Nov. 3rd's lecture, where we calculated the integral of x^{p}.

1. Random Question

Question 1.1. Suppose that you have an art gallery that is shaped like some sort of n-polygon, and you want to place cameras with 360°-viewing angles along the vertices of your polygon in such a way that the entire gallery is under surveillance. How many cameras do you need?

Above: an example 4-camera solution for the above 12-gon art gallery.

2. Integrating x^{p}

Today's lecture is centered around proving the following claim:
Lemma 2.1. The function $f(x)=x^{p}$ is integrable on $[0, b]$ for any $p \in \mathbb{N}$ and $b \in \mathbb{R}^{+}$. Furthermore, the integral of this function is $\frac{b^{p+1}}{p+1}$.

Proof. For convenience, we restate one of our definitions of the integral here:
Definition 2.2. A function f is integrable on the interval $[a, b]$ if and only if there is a sequence of partitions $\left\{P_{n}\right\}$ such that
$\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}(f(x)) \cdot\right.$ length $\left.\left(t_{i-1}, t_{i}\right)-\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right)=0$.
If this happens and the limit can be split over the two sums above, then we write
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}(f(x)) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right)=\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}(f(x)) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right)$,
and say that this quantity is the integral of $f(x)$ on the interval $[a, b]$.

So: how do we find this sequence of partitions? Well: one trick that will usually work is to simply partition $[0, b]$ into n equal parts - i.e. to consider the partition $0<\frac{b}{n}<2 \frac{b}{n}<\ldots<n \frac{b}{n}=b$. . Under this partition, we have that the upper-bound sum, $\left(\sum \sup \right)$, is

$$
\begin{aligned}
\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}(f(x)) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right) & =\sum_{k=1}^{n} \sup _{x \in\left(\frac{(k-1) b}{n}, \frac{k b}{n}\right)}\left(x^{p}\right) \cdot \text { length }\left(\frac{(k-1) b}{n}, \frac{k b}{n}\right) \\
& =\sum_{k=1}^{n}\left(\frac{k b}{n}\right)^{p} \cdot \frac{b}{n} \\
& =\frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n} k^{p}
\end{aligned}
$$

and that the lower-bound sum, $\left(\sum \mathrm{inf}\right)$, is

$$
\begin{aligned}
\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}(f(x)) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right) & =\sum_{k=1}^{n} \inf _{x \in\left(\frac{(k-1) b}{n}, \frac{k b}{n}\right)}\left(x^{p}\right) \cdot \text { length }\left(\frac{(k-1) b}{n}, \frac{k b}{n}\right) \\
& =\sum_{k=1}^{n}\left(\frac{(k-1) b}{n}\right)^{p} \cdot \frac{b}{n} \\
& =\frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n}(k-1)^{p}
\end{aligned}
$$

Taking their difference, we have that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)-\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right) \\
= & \lim _{n \rightarrow \infty}\left(\frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n} k^{p}-\frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n}(k-1)^{p}\right) \\
= & \lim _{n \rightarrow \infty} \frac{b^{p+1}}{n^{p+1}}\left(\sum_{k=1}^{n} k^{p}-\sum_{k=1}^{n}(k-1)^{p}\right) \\
= & \lim _{n \rightarrow \infty} \frac{b^{p+1}}{n^{p+1}}\left(n^{p}\right) \\
= & \lim _{n \rightarrow \infty} \frac{b^{p+1}}{n} \\
= & 0
\end{aligned}
$$

Thus, by our definition, the function x^{p} is integrable on $[0, b]$! Furthermore, we know that its integral is in fact given by the limit of either these upper sums or
lower sums: i.e. that

$$
\begin{aligned}
\int_{0}^{b} x^{p} d x & =\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right)=\lim _{n \rightarrow \infty} \frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n} k^{p} \\
& =\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right)=\lim _{n \rightarrow \infty} \frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n}(k-1)^{p} .
\end{aligned}
$$

So: how do we calculate these sums? At first, the answer isn't completely obvious: how can we evaluate these sums $\sum_{k=1}^{n} k^{p}$, for any $p \in \mathbb{N}$?

At first, we can try calculating these sums for some sample values of p : for $p=0$, for example, we have that

$$
\sum_{k=1}^{n} k^{p}=\sum_{k=1}^{n} k^{0}=\sum_{k=1}^{n} 1=n
$$

and thus that

$$
\begin{aligned}
\int_{0}^{b} x^{0} d x & =\lim _{n \rightarrow \infty} \frac{b^{0+1}}{n^{0+1}} \sum_{k=1}^{n} k^{0} \\
& =\lim _{n \rightarrow \infty} \frac{b}{n} \cdot n \\
& =b
\end{aligned}
$$

which is indeed the integral of $f(x)=x^{0}=1$ from 0 to b.
Similarly, for $p=1$, we have that

$$
\sum_{k=1}^{n} k^{p}=\sum_{k=1}^{n} k^{1}=\sum_{k=1}^{n} k=\frac{(n)(n+1)}{2},
$$

by Euler's identity. Thus, we have that

$$
\begin{aligned}
\int_{0}^{b} x^{0} d x & =\lim _{n \rightarrow \infty} \frac{b^{1+1}}{n^{1+1}} \sum_{k=1}^{n} k^{1} \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}}{n^{2}} \cdot \frac{(n)(n+1)}{2} \\
& =\frac{b^{2}}{2} \cdot \lim _{n \rightarrow \infty} \frac{n^{2}+n}{n^{2}} \\
& =\frac{b^{2}}{2}
\end{aligned}
$$

which again agrees with our claim that the integral should be $b^{p+1} /(p+1)$.
Using the identity

$$
\sum_{k=1}^{n} k^{2} \frac{(n)(n+1)(2 n+1)}{6}
$$

we can perform a similar calculation for $p=2$. However, there doesn't seem to be an immediately obvious pattern emerging here; i.e. the sums $\sum_{k=1}^{n} k^{p}$ aren't getting any easier to deal with! So: how do we deal with complicated objects whose limits we want to study?

With the squeeze theorem! Specifically, we can do the following:
(1) If we can show that

$$
\left(\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right) \leq \frac{b^{p+1}}{p+1} \leq\left(\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \operatorname{length}\left(t_{i-1}, t_{i}\right)\right)
$$

holds for every $n \in \mathbb{N}$, then
(2) the squeeze theorem will tell us that, because

$$
\begin{aligned}
\int_{0}^{b} x^{p} d x & =\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \sup _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \text { length }\left(t_{i-1}, t_{i}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\sum_{P_{n}} \inf _{x \in\left(t_{i-1}, t_{i}\right)}\left(x^{p}\right) \cdot \text { length }\left(t_{i-1}, t_{i}\right)\right)
\end{aligned}
$$

that the middle quantity must also converge to $\int_{a}^{b} x^{p} d x$! I.e, that

$$
\int_{0}^{b} x^{p} d x=\frac{b^{p+1}}{p+1}
$$

which is what we want to prove.
Therefore, it suffices to prove that the claim in (1) holds: i.e. that for any $b>0$ and $p \in \mathbb{N}$,

$$
\frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n}(k-1)^{p} \leq \frac{b^{p+1}}{p+1} \leq \frac{b^{p+1}}{n^{p+1}} \sum_{k=1}^{n} k^{p}
$$

Dividing through by b^{p+1} and multiplying by n^{p+1}, this becomes the claim

$$
\sum_{k=1}^{n}(k-1)^{p} \leq \frac{n^{p+1}}{p+1} \leq \sum_{k=1}^{n} k^{p}
$$

How do we prove this? Well: first, let's prove the following useful algebraic identity:

Lemma 2.3. For any $k \in \mathbb{N}$, we have that

$$
(k-1)^{p} \leq \frac{k^{p+1}-(k-1)^{p+1}}{p+1} \leq k^{p}
$$

Proof. First: remember that for any $x<y \in \mathbb{R}$, we have the equality

$$
x^{p+1}-y^{p+1}=(x-y)\left(x^{p}+x^{p-1} y+x^{p-2} y^{2}+\ldots+x y^{p-1}+y^{p}\right)
$$

If we let $x=k-1$ and $y=k$, this becomes the statement

$$
\begin{aligned}
k^{p+1}-(k-1)^{p+1} & =(k-(k-1))\left((k-1)^{p}+(k-1)^{p-1} k+\ldots+k^{p}\right) \\
& =(k-1)^{p}+(k-1)^{p-1} k+\ldots+k^{p}
\end{aligned}
$$

This right-hand side, however, can be bounded rather nicely from above and below! Specifically, notice that because $(k-1)^{p} \leq(k-1)^{l} \cdot k^{p-l} \leq k^{p}$ for any l, we have
$(k-1)^{p}+(k-1)^{p}+\ldots+(k-1)^{p} \leq(k-1)^{p}+(k-1)^{p-1} k+\ldots+k^{p} \leq k^{p}+k^{p}+\ldots+k^{p}$.

As there are $p+1$-many terms in the middle part, we can simplify this inequality to the statement

$$
(p+1)(k-1)^{p} \leq(k-1)^{p}+(k-1)^{p-1} k+\ldots+k^{p} \leq(p+1) k^{p}
$$

which becomes, after dividing through by $(p+1)$,

$$
(k-1)^{p} \leq \frac{(k-1)^{p}+(k-1)^{p-1} k+\ldots+k^{p}}{p+1} \leq k^{p} .
$$

Plugging in the first equality that we derived, $k^{p+1}-(k-1)^{p+1}=(k-1)^{p}+\ldots+k^{p}$, then gives us that

$$
(k-1)^{p} \leq \frac{k^{p+1}-(k-1)^{p+1}}{p+1} \leq k^{p}
$$

which is what we wanted to prove.
A trivial consequence of the above lemma is that

$$
\sum_{k=1}^{n}(k-1)^{p} \leq \sum_{k=1}^{n} \frac{k^{p+1}-(k-1)^{p+1}}{p+1} \leq \sum_{k=1}^{n} k^{p}
$$

Now, to finish our proof, simply notice that the middle sum is telescoping! In other words, that

$$
\sum_{k=1}^{n} \frac{k^{p+1}-(k-1)^{p+1}}{p+1}=\frac{n^{p+1}}{p+1}
$$

Consequently, we've proven that

$$
\sum_{k=1}^{n}(k-1)^{p} \leq \frac{n^{p+1}}{p+1} \leq \sum_{k=1}^{n} k^{p}
$$

and thus (via the algebra done earlier) that the quantity $\frac{b^{p+1}}{p+1}$ always lies between the ($\sum \sup$) and ($\sum \mathrm{inf}$) sums. Therefore, by the squeeze theorem, we must have that

$$
\int_{0}^{b} x^{p} d x=\frac{b^{p+1}}{p+1}
$$

which is what we claimed.

