
MATH 8, SECTION 1, WEEK 5 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Monday, Oct. 25th’s lecture, where we

begin our discussion of the derivative.

1. Random Question

Question 1.1. Can you find a function f : [0, 1]→ [0, 1] such that

• f(0) = 0, f(1) = 1,
• f is continuous, and
• everywhere f has a derivative, its derivative is 0?

2. Differentiation: Definitions

Definition 2.1. For a function f defined on some neighborhood (a− δ, a+ δ), we
say that f is differentiable at a iff the limit

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
exists. If it does, denote this limit as f ′(a); we will often call this value the deriv-
ative of f at a.

The derivative has a number of interpretations as physical phenomena, which
we will discuss in class on Wednesday; first, however, we will simply calculate a few
derivatives to show how to attack these kinds of problems.

3. Differentiation: Examples

Lemma 3.1. The derivative of f(x) = 1/x at any point a 6= 0 is −1/a2.

Proof. Pick any point a 6= 0 in R: then, a direct calculation of the limit tells us
that

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= lim

h→0

1
a+h −

1
a

h

= lim
h→0

a
(a)·(a+h) −

a+h
(a)·(a+h)

h

= lim
h→0

a−a−h
(a)·(a+h)

h

= lim
h→0

−h
(h) · (a) · (a+ h)

= lim
h→0

−1

(a) · (a+ h)

1
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But this is just the quotient of a pair of polynomials, the denominator of which is
nonzero as h→ 0. Because polynomials are continuous, we then know that we can
pass the limit through the quotient operation, and just evaluate the numerator and
denominator’s limits separately. Consequently, we have that this limit is −1/a2, as
claimed. �

The above example was a rather quick and direct calculation; our second exam-
ple, however, is a bit trickier:

Lemma 3.2. The derivative of f(x) = ex at any point a is ea.

Before we begin this proof, however, we probably should define our terms: what
do we even mean by ex here, anyways?

3.1. Power Series, ex, and the Radius of Convergence: A Quick Detour.
In class around a week ago, we defined ex as the following series:

ex =

∞∑
n=0

xn

n!

One quick question to ask is this: why does this series even exist for every x?
(Answer: ratio test! Try it if you’re incredulous, or simply skip a few paragraphs
to where we perform this calculation.)

Another, perhaps deeper question, is this: Suppose that we’re working not with
just

∑∞
n=0

xn

n! , but some arbitrary series of the form
∑∞

n=0 anx
n, where the an’s

are some sequence of constants. What happens then? Will these series always
converge, just like ex’s series did? Will they sometimes not converge, for certain
values of x?

To make this more specific: consider the following definition:

Definition 3.3. For a series of the form1
∑∞

n=0 anx
n, we say that the radius of

convergence of this series is some value R ∈ R such that

• if x is a real number such that |x| < R,
∑∞

n=0 anx
n converges, and

• if x is a real number such that |x| > R,
∑∞

n=0 anx
n diverges.

Our question now is the following: Does every power series have a radius of
convergence? Are there power series that don’t have (−∞,∞) as their radius of
convergence? Consider first the following three examples:

Example 3.4. The radius of convergence of
∑∞

n=0
xn

n! , as discussed earlier, is
(−∞,∞) ; this is because for any x,

lim
n→∞

xn+1

(n+1)!
xn

n!

= lim
n→∞

x

n+ 1
= 0 < 1,

and thus the ratio test tells us that this series converges, for any x.

The radius of convergence of
∑∞

n=0
|x|n
4n is (−4, 4): this is because for any x,

lim
n→∞

|x|n+1

4n+1

|x|n
4n

= lim
n→∞

x

4
,

1Such series are called power series, because they are a series made out of increasing powers
of xn.
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which is < 1 if |x| < 4, and > 1 if |x| > 4. Thus, we know by the ratio test that
this series has radius of convergence (−4, 4).

The radius of convergence of
∑∞

n=0 |x|n · n! is ∅. To see why, pick any x 6= 0,

and notice that because the series
∑∞

n=0
xn

n! converged, the limit as n approaches

infinity of its individual terms xn

n! must be 0. Consequently, we know that the limit
of the reciprocal of these terms,

lim
n→∞

n!

xn
= lim

n→∞
n! ·

(
1

x

)n

cannot exist and must fly off to infinity. But, if we write y = 1/x, this tells us that
the limit of the individual terms in the series

∑∞
n=0 |y|n ·n! doesn’t exist – and thus

is definitely not 0! Consequently, we know that this series cannot converge for any
x 6= 0.

So: as it turns out, there are a number of fantastically useful properties about
such “power series” and their radii of convergence. We’ll return to these concepts
later in the course, but for the purposes of exploring ex we will state two of these
properties here:

Proposition 3.5. Every power series
∑∞

n=0 anx
n has a radius of convergence.

Proposition 3.6. If
∑∞

n=0 anx
n is has the radius of convergence (−R,R), then

the function f(x) =
∑∞

n=0 anx
n is continuous on (−R,R).

It’s entirely within the scope of the tools you now have to prove both of these
statements! However, in the interests of staying mostly on-topic, we will defer those
proofs to a later date, and return to our original claim:

Lemma 3.7. The derivative of f(x) = ex at any point a is ea.

Proof. We start by simply examining the derivative as a limit:

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= lim

h→0

ea+h − ea

h

= lim
h→0

eaeh − ea

h

= lim
h→0

ea · e
h − 1

h

= lim
h→0

ea ·
∑∞

n=0
hn

n! − 1

h
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In order to bring the −1 and the division by h into our sum, we express it as a
limit, and use the fact that limits play nicely with arithmetic:

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= lim

h→0
ea ·

(
limn→∞ 1 + h

1 + h2

2! + . . .+ hn

n!

)
− 1

h

= lim
h→0

ea ·

(
limn→∞

h
1 + h2

2! + . . .+ hn

n!

)
h

= lim
h→0

ea ·
(

lim
n→∞

1

1
+
h

2!
+ . . .+

hn−1

n!

)
= lim

h→0
ea ·

( ∞∑
n=1

hn−1

n!

)

This sum has radius of convergence (−∞,∞), by the ratio test. Thus, if we think
of it as a function with one variable h, it is continuous by our earlier observations
on all of R: consequently, the limit as h→ 0 of this series is just its value evaluated
at 0: i.e.

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
= ea ·

( ∞∑
n=1

0n−1

n!

)
= ea · 1
= ea.

Thus, the derivative of ex at a is ea, as claimed. �

4. Differentiation: Tools

As always, when we introduce a new definition, we like to create a number of
tools to make using it a world easier. We list a few results below:

Proposition 4.1. For f , g a pair of functions differentiable at a and α, β a pair
of constants,

(αf(x) + βg(x))′(a) = αf ′(a) + βg′(a).

Proposition 4.2. For f , g a pair of functions differentiable at a,

(f(x) · g(x))′(a) = f ′(a) · g(a) + g′(a) · f(a).

Proposition 4.3. For f a function differentiable at g(a) and g a function differ-
entiable at a,

(f(g(x)))′(a) = f ′(g(a)) · g′(a).

Basically, between these three theorems, most of your derivative calculations
should come through the results we’ve established in class (how to take derivatives
of trig functions, polynomials, and ex) and just blind bashing with the above three
rules.

To illustrate how this is done, consider the following example:

Lemma 4.4. For any positive a,

(ln(x))′(a) =
1

a
.
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Proof. To do this, we should maybe define what ln(x) is! So: define ln(x) as the
function from (0,∞) to R, that takes x ∈ R to the unique value y ∈ R such that
ey = x. Basically, ln(x) is the function that undoes ex: it is the unique function
such that eln(x) = x, for any positive x.

Using this definition, examine the quantity eln(x). On one hand, we know that
this function is just x by definition; so(

eln(x)
)′

= (x)′ = 1.

On the other hand,(
eln(x)

)′
= eln(x) · (ln(x))

′
, (by the chain rule)

= x · (ln(x))
′
.

Equating both sides, we have that

1 = x · (ln(x))
′

⇒ 1

x
= (ln(x))

′
.

So we’re done! �
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