
MATH 8, SECTION 1, WEEK 4 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Wednesday, Oct. 20th’s lecture, where

we studied several different kinds of discontinuous functions.

1. Random Question

Question 1.1. Can you find a function f : R→ R that’s

• continuous at every rational point q ∈ Q, but
• discontinuous at every irrational point a ∈ R \Q?

2. Discontinuity Proofs: A Lemma and a Blueprint

How do we show a function is discontinuous? Specifically: in our last class, we
described a “blueprint” for showing that a given function was continuous at a point.
Can we do the same for the concept of discontinuity?

As it turns out, we can! Specifically, we have the following remarkably useful
lemma, proved in Dr. Ramakrishnan’s class on Wednesday:

Lemma 2.1. For any function f : X → Y , we know that limx→a f(x) 6= L iff there
is some sequence {an}∞n=1 with the following properties:

• limn→∞ an = L, and
• limn→∞ f(an) 6= L, and

This lemma makes proving that a function f is discontinuous at some point a
remarkably easy: all we have to do is find a sequence {an}∞n=1 that converges to a
on which the values f(an) fail to converge to f(a). Basically, it allows us to work
in the world of sequences instead of that of continuity; a change that makes a lot
of our calculations easier to make.

The following three examples should help illustrate our methods here:

3. Three Discontinuous Functions

Lemma 3.1. The function sin(1/x) has no defined limit at 0.

Proof. (This proof has been redacted, as it’s apparently on the problem set this
week! Oops.)
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Thus, because
−1 6= 1, we have that the limit limx→0 sin(1/x) cannot exist, as claimed.

�

Question 3.2. Can you find a function f : R→ R that’s discontinuous everywhere?

Proof. (Again, as this question is apparently #3 on your problem set this week,
this example has been redacted as well. Sorry!)

f(x) =

{
1, if x ∈ Q, and
0, if x ∈ R \Q.

a− 1

n
< qn < a, and a− 1

n
< βn < a.
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lim
n→∞

f(qn) = lim
n→∞

1 = 1, and lim
n→∞

f(βn) = lim
n→∞

0 = 0.

As this is impossible, we conclude that the
limit limx→a f(x) cannot exist, for any a ∈ R. �

Question 3.3. Can you find a function f : R→ R that’s

• continuous at every irrational point a ∈ R \Q, but
• discontinuous at every rational point q ∈ Q?

Proof. (Un-redacted math! yay!) As it turns out: yes! Consider the function
f : R→ R defined as follows:

f(x) =


1
q , if x = p

q ∈ Q and GCD(p, q) = 1;

0, if x ∈ R \Q;
1, x = 0.

Take any rational point a
b ∈ Q; we claim that our function is discontinuous at a

b .
To see this, we proceed in a similar fashion to our earlier example: specifically, using
the densty of the irrational numbers in R, choose a sequence {βn}∞n=1 of irrational
numbers such that

βn ∈ R \Q, and
a

b
− 1

n
< βn <

a

b
.

By construction, this sequence converges to a
b . However, we have that

lim
n→∞

f(βn) = lim
n→∞

0 = 0;

thus, by our lemma, if a limit exists at a
b , it must be 0. However, if we look at our

function f at a
b , we can see that f

(
a
b

)
= 1

b if a
b 6= 0, and 1 if a

b = 0; as neither of
these values is equal to 0, we know that our function must be discontinuous at 0.

That finishes half of our proof; the remaining half, then, is in proving that for
any irrational number a ∈ R,

lim
x→a

f(x) = 0.

To see this: start by assuming that a ∈ [0, 1] (at the end of the proof, we’ll
extend this result to any irrational a.)

Let the sequence {qn}∞n=1 consist of all of the rational numbers in [0, 1] ordered
by the size of their denominators: i.e.

{qn}∞n=1 =

{
0, 1,

1

2
,

1

3
,

2

3
,

1

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
, . . .

}
Because a is irrational, we know that the distance |a − qn| 6= 0, for any n: so,

define γn = |a− qn| to be that distance, for every n, and let

{γn}∞n=1 = {γ1, γ2, γ3 . . .}

To prove that our function is continuous at a: pick any ε > 0, and choose N
such that 1

N < ε. Then, if we want to keep our function f(x) within at least 1
N
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of 0, we just need to insure that all of our x-values are either irrational or have
denominators ≥ N ; i.e. we need to pick values of x such that

x /∈
{

0, 1,
1

2
,

1

3
,

2

3
, . . . ,

1

N
, . . .

N − 1

N

}
.

Let QN denote the above collection of all rational numbers in [0, 1] with denom-
inators ≤ N . Let ΓN denote the associated set of distances γi to this set QN :
i.e.

ΓN = {γ1, . . . γsomething} .
ΓN is a finite set: so it has a minimum γ > 0.

Set δ = min(γ, a, 1− a): then, for any x with |x− a| < δ, we have that

• x > 0, because δ ≤ a,
• 1 > x, because δ ≤ 1− a, and
• if x is rational, the denominator of x is strictly greater than N : this is

because |x−a| < δ ≤ γ, and any rational number in [0, 1] with denominator
≤ N is at least γ away from a.

Thus, we either have that x is rational, is in [0, 1], and has denominator strictly
greater than N (in which case |f(x)| < 1/N < ε), or we have that x is irrational (in
which case |f(x)| = 0 < ε.) In either case, we have found a δ such that whenever
|x−a| < δ, |f(x)−0| < ε; so this function is continuous at any irrational a in [0, 1].

To extend this result to any irrational a: if a is in some interval [n, n+1], simply
translate all of the relevant parts in this proof by n. All of our calculations go
through as before: thus, we have in fact that our function is continuous at any
irrational value a. So we’re done!
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