MATH 8, SECTION 1, WEEK 4 - RECITATION NOTES

TA: PADRAIC BARTLETT

ABSTRACT. These are the notes from Monday, Oct. 18th's lecture, where we started to discuss the ideas of limits and continuity.

1. RANDOM QUESTION

Question 1.1. So, in \mathbb{R}^2 , you can draw at most 6 equilateral triangles around a given point; this is a simple consequence of the internal angle of a equilateral triangle being 60°. A natural generalization of the above question, then, is the following: in \mathbb{R}^3 , what is the maximum number of regular tetrahedra can you fit around a given point?

2. Continuity: Definitions

Definition 2.1. If $f: X \to Y$ is a function between two subsets X, Y of \mathbb{R} , we say that

$$\lim_{x \to a} f(x) = L$$

if and only if

- (1) (vague:) as x approaches a, f(x) approaches L.
- (2) (precise; wordy:) for any distance $\epsilon > 0$, there is some neighborhood $\delta > 0$ of a such that whenever $x \in X$ is within δ of a, f(x) is within ϵ of L.
- (3) (precise; symbols:)

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in X, (|x - a| < \delta) \Rightarrow (|f(x) - L| < \epsilon).$$

Definition 2.2. A function $f : X \to Y$ is said to be **continuous** at some point $a \in X$ iff

$$\lim_{x \to a} f(x) = f(a).$$

Somewhat strange definitions, right? At least, the two "rigorous" definitions are somewhat strange: how do these epsilons and deltas connect with the rather simple concept of "as x approaches a, f(x) approaches f(a)"? To see this a bit better, consider the following image:

This graph shows pictorially what's going on in our "rigorous" definition of limits and continuity: essentially, to rigorously say that "as x approaches a, f(x) approaches f(a)", we are saying that

- for any distance ϵ around f(a) that we'd like to keep our function,
- there is a neighborhood $(a \delta, a + \delta)$ around a such that
- if f takes only values within this neighborhood $(a \delta, a + \delta)$, it stays within ϵ of f(a).

Basically, what this definition says is that if you pick values of x sufficiently close to a, the resulting f(x)'s will be as close as you want to be to f(a) – i.e. that "as x approaches a, f(x) approaches f(a)."

This, hopefully, illustrates what our definition is trying to capture – a concrete notion of something like convergence for functions, instead of sequences. So: how can we prove that a function f has some given limit L? Motivated by this analogy to sequences, we have the following blueprint for a proof-from-the-definitions that $\lim_{x\to a} f(x) = L$:

(1) First, examine the quantity

$$|f(x) - L|.$$

Specifically, try to find a simple upper bound for this quantity that depends only on |x - a|, and goes to 0 as x goes to a – something like $|x - a| \cdot$ (constants), or $|x - a|^3 \cdot$ (bounded functions, like $\sin(x)$).

- (2) Using this simple upper bound, for any $\epsilon > 0$, choose a value of δ such that whenever $|x a| < \delta$, your simple upper bound $|x a| \cdot (\text{constants})$ is $< \epsilon$. Often, you'll define δ to be $\epsilon/(\text{constants})$, or some such thing.
- (3) Plug in the definition of the limit: for any $\epsilon > 0$, we've found a δ such that whenever $|x a| < \delta$, we have

 $|f(x) - L| < (\text{simple upper bound depending on } |x - a|) < \epsilon.$

Thus, we've proven that $\lim_{x\to a} f(x) = L$, as claimed.

The following example ought to illustrate what we're talking about here:

3. Continuity: An Example

Lemma 3.1. The function $\frac{1}{x^2}$ is continuous at every point $a \neq 0$.

Proof. We want to prove that $\lim_{x\to a} \frac{1}{x^2} = \frac{1}{a^2}$, for any $a \neq 0$. We proceed according to our blueprint:

(1) First, we examine the quantity $\left|\frac{1}{x^2} - \frac{1}{a^2}\right|$:

$$\frac{1}{x^2} - \frac{1}{a^2} \bigg| = \bigg| \frac{a^2}{a^2 x^2} - \frac{x^2}{a^2 x^2} \bigg| \\
= \bigg| \frac{a^2 - x^2}{a^2 x^2} \bigg| \\
= \bigg| \frac{(a - x)(a + x)}{a^2 x^2} \bigg| \\
= |a - x| \cdot \bigg| \frac{(a + x)}{a^2 x^2} \bigg| \\
= |x - a| \cdot \bigg| \frac{(a + x)}{a^2 x^2} \bigg| .$$

By algebraic simplification, we've broken our expression into two parts: one of which is |x - a|, and the other of which is...something. We'd like to get rid of this extra part $\left|\frac{(a+x)}{a^2x^2}\right|$; so, how do we do this? We cannot just say that this quantity is bounded; indeed, for very small values of x, this explodes off to infinity.

But for values of x rather close to a, because $a \neq 0$, this is bounded! In fact, if we have values of x such that x is within a/2 of a, we have

$$\frac{(a+x)}{a^2x^2} \leq \left| \frac{(a+(3a/2))}{a^2x^2} \right|$$
$$\leq \left| \frac{(a+(3a/2))}{a^2(a/2)^2} \right|$$
$$= \left| \frac{10}{a^3} \right|$$

which is some nicely bounded constant. So, when we pick our δ , if we just make sure that $\delta < a/2$, we know that we have this quite simple and excellent upper bound

$$|f(x) - f(a)| \le |x - a| \cdot \left| \frac{10}{a^3} \right|.$$

(2) We have a simple upper bound! Our next step then proceeds as follows: for any $\epsilon > 0$, we want to pick a $\delta > 0$ such that if $|x - a| < \delta$,

$$|x-a| \cdot \left|\frac{10}{a^3}\right| < \epsilon.$$

But this is rather simple: if we want this to happen, we merely need to pick δ so that $\delta < a/2$ (so we get to use our nice simple upper bound,) and also so that $\delta < \epsilon / \frac{10}{|a|^3}$. Explicitly, we can pick $\delta < \min\left(a/2, \epsilon / \frac{10}{|a|^3}\right)$.

(3) Thus, for any $\epsilon > 0$, we've found a $\delta > 0$ such that whenever $|x - a| < \delta$, we have

$$|x-a| \cdot \left| \frac{10}{a^3} \right| < \epsilon.$$

Thus, $\lim_{x\to a} \frac{1}{x^2} = \frac{1}{a^2}$ for any $a \neq 0$, as claimed.

4. Continuity: Three Useful Tools

Limits and continuity are wonderfully useful concepts, but working with them straight from the definitions – as we saw above – can be somewhat ponderous. As a result, we have developed a number of useful tools and theorems to allow us to prove that certain limits exist without going through the definition every time: we present three such tools, and examples for each, here.

Theorem 4.1. (Squeeze theorem:) If f, g, h are functions defined on some interval $I \setminus \{a\}^1$ such that

$$\begin{aligned} f(x) &\leq g(x) \leq h(x), \forall x \in I \setminus \{a\},\\ \lim_{x \to a} f(x) &= \lim_{x \to a} h(x), \end{aligned}$$

then $\lim_{x\to a} g(x)$ exists, and is equal to the other two limits $\lim_{x\to a} f(x)$, $\lim_{x\to a} h(x)$.

Example 4.2.

$$\lim_{x \to 0} x^2 \sin(1/x) = 0.$$

Proof. So: for all $x \in \mathbb{R}, x \neq 0$, we have that

$$-1 \le \sin(1/x) \le 1$$

$$\Rightarrow -x^2 \le x^2 \sin(1/x) \le x^2;$$

thus, by the squeeze theorem, as the limit as $x \to 0$ of both $-x^2$ and x^2 is 0,

$$\lim_{x \to 0} x^2 \sin(1/x) = 0$$

as well.

4

¹The set $X \setminus Y$ is simply the set formed by taking all of the elements in X that are not elements in Y. The symbol \setminus , in this context, is called "set-minus", and denotes the idea of "taking away" one set from another.

Theorem 4.3. (Limits and arithmetic): if f, g are a pair of functions such that $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ both exist, then we have the following equalities:

$$\begin{split} \lim_{x \to a} (\alpha f(x) + \beta g(x)) &= \alpha \left(\lim_{x \to a} f(x) \right) + \beta \left(\lim_{x \to a} g(x) \right) \\ \lim_{x \to a} (f(x) \cdot g(x)) &= \left(\lim_{x \to a} f(x) \right) \cdot \left(\lim_{x \to a} g(x) \right) \\ \lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) &= \left(\lim_{x \to a} f(x) \right) / \left(\lim_{x \to a} g(x) \right), \text{ if } \lim_{x \to a} g(x) \neq 0. \end{split}$$

Corollary 4.4. Every polynomial is continuous everywhere.

Proof. To start, we know that the functions f(x) = x and f(x) = 1 are trivially continuous. By multiplying these functions together and scaling by constant factors, we can create any polynomial; thus, by the above theorem, we know that any polynomial must be continuous, as we can create it from continuous things through arithmetical operations.

Theorem 4.5. (Limits and composition): if $f : Y \to Z$ is a function such that $\lim_{y\to a} f(x) = L$, and $g : X \to Y$ is a function such that $\lim_{x\to b} g(x) = a$, then

$$\lim_{x \to b} f(g(x)) = L$$

Specifically, if both functions are continuous, their composition is continuous.

Example 4.6.

$$\lim_{x \to a} \sin(1/x^2) = \sin(1/a^2),$$

if $a \neq 0$.

Proof. By our work earlier in this lecture, $1/x^2$ is continuous at any value of $a \neq 0$, and from class $\sin(x)$ is continuous everywhere: thus, we have that their composition, $\sin(1/a^2)$, is continuous wherever $x \neq 0$. Thus,

$$\lim_{x \to a} \sin(1/x^2) = \sin(1/a^2),$$

as claimed.