MATH 8, SECTION 1, WEEK 4 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract

These are the notes from Friday, Oct. 22nd's lecture. In this talk, we wrap up a number of loose ends relating to continuity and limits, discussing one-sided limits, limits at infinity, the intermediate value theorem, and the concepts of open, closed, and bounded sets.

1. Random Question

Question 1.1. Can you find a function $f:[0,1] \rightarrow[0,1]$ such that

- f is continuous,
- $f(0)=0, f(1)=1$, and
- f takes on every value in the interval $(0,1)$ exactly once? Twice? Three times? n times? Infinitely many times?

Today's lecture is kind of a grab-bag of topics; where Monday and Wednesday's lectures were devoted to exploring a pair of complicated topics slowly and carefully, most of the ideas in today's lecture are relatively short and sweet. Consequently, we'll move at a faster pace; there are about four concepts that we should cover today, each of which is hopefully a little related to the others and should be useful in your study of limits and continuity.

2. One-Sided Limits

Let's start with something fairly elementary: the concept of a one-sided limit:
Definition 2.1. For a function $f: X \rightarrow Y$, we say that

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if and only if
(1) (vague:) as x goes to a from the right-hand-side, $f(x)$ goes to L.
(2) (concrete, symbols:)

$$
\forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x \in X,(|x-a|<\delta \text { and } x>a) \Rightarrow(|f(x)-L|<\epsilon)
$$

Similarly, we say that

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if and only if
(1) (vague:) as x goes to a from the left-hand-side, $f(x)$ goes to L.
(2) (concrete, symbols:)

$$
\forall \epsilon>0, \exists \delta>0 \text { s.t. } \forall x \in X,(|x-a|<\delta \text { and } x<a) \Rightarrow(|f(x)-L|<\epsilon)
$$

Basically, this is just our original definition of a limit except we're only looking at x-values on one side of the limit point a : hence the name "one-sided limit." Thus, our methods for calculating these limits are pretty much identical to the methods we introduced on Monday: we work one example below, just to reinforce what we're doing here.

Claim 2.2.

$$
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1
$$

Proof. First, examine the quantity

$$
\frac{|x|}{x}
$$

For $x>0$, we have that

$$
\frac{|x|}{x}=1
$$

therefore, for any $\epsilon>0$, it doesn't even matter what δ we pick! - because for any x with $0<x$, we have that

$$
\left|\frac{|x|}{x}-1\right|=0<\epsilon
$$

Thus, the limit as $\frac{|x|}{x}$ approaches 0 from the right hand side is 1 , as claimed.
One-sided limits are particularly useful when we're discussing limits at infinity, as we describe in the next section:

3. Limits at Infinity

Definition 3.1. For a function $f: X \rightarrow Y$, we say that

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

if and only if
(1) (vague:) as x goes to "infinity," $f(x)$ goes to L.
(2) (concrete, symbols:)

$$
\forall \epsilon>0, \exists N \text { s.t. } \forall x \in X,(x>N) \Rightarrow(|f(x)-L|<\epsilon)
$$

Similarly, we say that

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if and only if
(1) (vague:) as x goes to "negative infinity," $f(x)$ goes to L.
(2) (concrete, symbols:)

$$
\forall \epsilon>0, \exists N \text { s.t. } \forall x \in X,(x<N) \Rightarrow(|f(x)-L|<\epsilon)
$$

In class, we described a rather useful trick for calculating limits at infinity:

Proposition 3.2. For any function $f: X \rightarrow Y$,

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow 0^{+}} f\left(\frac{1}{x}\right)
$$

Similarly,

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow 0^{-}} f\left(\frac{1}{x}\right)
$$

The use of this theorem is that it translates limits at infinity (which can be somewhat complex to examine) into limits at 0 , which can be in some sense a lot easier to deal with: as opposed to worrying about what a function does at extremely large values, we can just consider what a different function does at rather small values (which can make our lives often a lot easier.)

Here's an example, to illustrate where this comes in handy:

Claim 3.3.

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}+\cos (34 x)+10^{7} \cdot x}{2 x^{2}+1}=\frac{3}{2} .
$$

Proof. Motivated by our proposition above, let us subsitute $1 / x$ for x, so that we have

$$
\lim _{x \rightarrow+\infty} \frac{3 x^{2}+\cos (34 x)+10^{7} \cdot x}{2 x^{2}+1}=\lim _{x \rightarrow 0^{+}} \frac{3(1 / x)^{2}+\cos (34 / x)+10^{7} \cdot(1 / x)}{2(1 / x)^{2}+1} .
$$

Multiplying both top and bottom by x^{2}, this limit is equal to

$$
\lim _{x \rightarrow 0^{+}} \frac{3+x^{2} \cos (34 / x)+10^{7} \cdot x}{2+x^{2}}
$$

Because limits play nicely with arithmetic, we know that the limit of this ratio is the ratio of the two limits $3+x^{2} \cos (34 / x)+10^{7} \cdot x$ and $2+x^{2}$, if and only iff both limits exist.

But that's simple to see: because $2+x^{2}$ is a polynomial, it's continuous, and thus

$$
\lim _{x \rightarrow 0^{+}} 2+x^{2}=2+0^{2}=2
$$

As well, because

$$
3-x^{2}+1-^{7} \cdot x \leq 3+x^{2} \cos (34 / x)+10^{7} \cdot x \leq 3+x^{2}+1-^{7} \cdot x
$$

and both of those polynomials converge to 3 as $x \rightarrow 0^{+}$, the squeeze theorem tells us that

$$
\lim _{x \rightarrow 0^{+}} 3+x^{2} \cos (34 / x)+10^{7} \cdot x=3
$$

as well.
Thus, because both limits exist, we have that

$$
\lim _{x \rightarrow 0^{+}} \frac{3+x^{2} \cos (34 / x)+10^{7} \cdot x}{2+x^{2}}=\frac{\lim _{x \rightarrow 0^{+}}\left(3+x^{2} \cos (34 / x)+10^{7} \cdot x\right)}{\lim _{x \rightarrow 0^{+}}\left(2+x^{2}\right)}=\frac{3}{2}
$$

as claimed.
One useful application of limits at infinity comes through studying the intermediate value theorem, which is the subject of our next section:

4. The Intermediate Value Theorem

Theorem 4.1. If f is a continuous function on $[a, b]$, then f takes on every value between $f(a)$ and $f(b)$ at least once.

Most uses of this theorem occur when we have a continuous function f that takes on both positive and negative values on some interval; in this case, the intermediate value theorem tells us that this function must have a zero between each pair of sign changes. Basically, when you have a question that's asking you to find zeroes of a function, or to show that a function with prescribed endpoint behavior takes on some other values, the IVT is the way to go.

To illustrate this, consider the following example:
Claim 4.2. If $p(x)$ is an odd-degree polynomial, it has a root in \mathbb{R} - i.e. there is some $x \in \mathbb{R}$ such that $p(x)=0$.

Proof. Write

$$
p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}
$$

where n is an odd natural number and $a_{n}>0$. (The case where $a_{n}<0$ is identical to the proof we're about to do if you flip all of the inequalities, so we omit it here by symmetry.)

Then, notice that

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}} & =\lim _{x \rightarrow+\infty}\left(\frac{a_{0}}{x^{n}}+\frac{a_{1}}{x^{n-1}}+\ldots+\frac{a_{n-1}}{x}+a_{n}\right) \\
& =\lim _{x \rightarrow+\infty}\left(\frac{a_{0}}{x^{n}}\right)+\lim _{x \rightarrow+\infty}\left(\frac{a_{1}}{x^{n-1}}\right)+\ldots+\lim _{x \rightarrow+\infty}\left(a_{n}\right) \\
& =0+\ldots+0+a_{n} \\
& =a_{n}
\end{aligned}
$$

(where the second line is justified because all of the individual limits exist.)
As a result, we know that for large positive values of $x, \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is as close to a_{n} as we would like. Specifically, we know that for large values of x, we have that the distance between $\frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ and a_{n} is less than, say, $a_{n} / 2$. As a consequence, we have specifically that $\frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is positive, for large positive values of x thus, for some large positive x, we have that

$$
x^{n} \cdot \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}=(\text { positive }) \cdot(\text { positive })=(\text { positive })
$$

Similarly, because

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}} & =\lim _{x \rightarrow-\infty}\left(\frac{a_{0}}{x^{n}}+\frac{a_{1}}{x^{n-1}}+\ldots+\frac{a_{n-1}}{x}+a_{n}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{a_{0}}{x^{n}}\right)+\lim _{x \rightarrow-\infty}\left(\frac{a_{1}}{x^{n-1}}\right)+\ldots+\lim _{x \rightarrow-\infty}\left(a_{n}\right) \\
& =0+\ldots+0+a_{n} \\
& =a_{n}
\end{aligned}
$$

we also have that for large negative values of $x, \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is as close to a_{n} as we'd like, and thus that $\frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}$ is positive, for large negative values of x.

Thus, for some large negative value of x, we have that

$$
x^{n} \cdot \frac{a_{0}+\ldots+a_{n} x^{n}}{x^{n}}=(\text { negative }) \cdot(\text { positive })=(\text { negative }) .
$$

(Notice that the fact that n was odd was used in the above calculation, to insure that x negative implies that x^{n} is negative.)

We have thus shown that our polynomial adopts at least one positive and one negative value: thus, by the intermediate value theorem, it must be 0 somewhere between these two values! Thus, our polynomial has a root, as claimed.

5. Open, Closed, and Bounded Sets

Finally, we make something of a detour here, to quickly define open, closed, and bounded sets:

Definition 5.1. A set $X \subset \mathbb{R}$ is called open if for any $x \in X$, there is some neighborhood δ_{x} of x such that the entire interval $\left(x-\delta_{x}, x+\delta_{x}\right)$ lies in X.
Example 5.2.

- The sets \mathbb{R} and \emptyset are both trivially open sets.
- Any open interval (a, b) is an open set.
- The union ${ }^{1}$ of arbitrarily many open sets is open.
- The intersection ${ }^{2}$ of finitely many open sets is open.

Definition 5.3. A set $X \subset \mathbb{R}$ is called closed if its complement ${ }^{3}$ is open.
Example 5.4.

- The sets \mathbb{R} and \emptyset are both trivially closed sets. Note that this means that some sets can be both open and closed!
- Any closed interval $[a, b]$ is an closed set.
- The intersection of arbitarily many closed sets is closed.
- The union of finitely many closed sets is closed.

Definition 5.5. A set $X \subset \mathbb{R}$ is bounded iff there is some value $M \in \mathbb{R}$ such that $-M \leq x \leq M$, for any $x \in X$.

We will work more closely with these definitions in future lectures: however, for now, it suffices to note the following useful theorem, which we'll use heavily in our discussion of the derivative:
Theorem 5.6. (Extremal value theorem:) If $f: X \rightarrow Y$ is a continuous function, and X is a closed and bounded subset X of \mathbb{R}, then f attains its minima and maxima. In other words, there are values $m, M \in X$ such that for any $x \in X$, $f(m) \leq f(x) \leq f(M)$.

[^0]
[^0]: ${ }^{1}$ The union $X \cup Y$ of two sets X, Y is the set $\{a: a \in X$ or $a \in Y$, or both. $\}$
 ${ }^{2}$ The intersection $X \cap Y$ of two sets X, Y is the set $\{a: a \in X$ and $a \in Y$. $\}$
 ${ }^{3}$ The complement X^{c} of a set X is the set $\{a: a \notin X\}$

