
MATH 8, SECTION 1, WEEK 4 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Friday, Oct. 22nd’s lecture. In this

talk, we wrap up a number of loose ends relating to continuity and limits,

discussing one-sided limits, limits at infinity, the intermediate value theorem,
and the concepts of open, closed, and bounded sets.

1. Random Question

Question 1.1. Can you find a function f : [0, 1]→ [0, 1]such that

• f is continuous,
• f(0) = 0, f(1) = 1, and
• f takes on every value in the interval (0, 1) exactly once? Twice? Three

times? n times? Infinitely many times?

Today’s lecture is kind of a grab-bag of topics; where Monday and Wednesday’s
lectures were devoted to exploring a pair of complicated topics slowly and carefully,
most of the ideas in today’s lecture are relatively short and sweet. Consequently,
we’ll move at a faster pace; there are about four concepts that we should cover
today, each of which is hopefully a little related to the others and should be useful
in your study of limits and continuity.

2. One-Sided Limits

Let’s start with something fairly elementary: the concept of a one-sided limit:

Definition 2.1. For a function f : X → Y , we say that

lim
x→a+

f(x) = L

if and only if

(1) (vague:) as x goes to a from the right-hand-side, f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x > a)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→a−

f(x) = L

if and only if

(1) (vague:) as x goes to a from the left-hand-side, f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x < a)⇒ (|f(x)− L| < ε).
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Basically, this is just our original definition of a limit except we’re only looking at
x-values on one side of the limit point a: hence the name “one-sided limit.” Thus,
our methods for calculating these limits are pretty much identical to the methods
we introduced on Monday: we work one example below, just to reinforce what we’re
doing here.

Claim 2.2.

lim
x→0+

|x|
x

= 1.

Proof. First, examine the quantity

|x|
x
.

For x > 0, we have that

|x|
x

= 1;

therefore, for any ε > 0, it doesn’t even matter what δ we pick! – because for any
x with 0 < x, we have that ∣∣∣∣ |x|x − 1

∣∣∣∣ = 0 < ε.

Thus, the limit as |x|x approaches 0 from the right hand side is 1, as claimed. �

One-sided limits are particularly useful when we’re discussing limits at infinity,
as we describe in the next section:

3. Limits at Infinity

Definition 3.1. For a function f : X → Y , we say that

lim
x→+∞

f(x) = L

if and only if

(1) (vague:) as x goes to “infinity,” f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃N s.t. ∀x ∈ X, (x > N)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→−∞

f(x) = L

if and only if

(1) (vague:) as x goes to “negative infinity,” f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃N s.t. ∀x ∈ X, (x < N)⇒ (|f(x)− L| < ε).

In class, we described a rather useful trick for calculating limits at infinity:
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Proposition 3.2. For any function f : X → Y ,

lim
x→+∞

f(x) = lim
x→0+

f

(
1

x

)
.

Similarly,

lim
x→−∞

f(x) = lim
x→0−

f

(
1

x

)
.

The use of this theorem is that it translates limits at infinity (which can be
somewhat complex to examine) into limits at 0, which can be in some sense a lot
easier to deal with: as opposed to worrying about what a function does at extremely
large values, we can just consider what a different function does at rather small
values (which can make our lives often a lot easier.)

Here’s an example, to illustrate where this comes in handy:

Claim 3.3.

lim
x→+∞

3x2 + cos(34x) + 107 · x
2x2 + 1

=
3

2
.

Proof. Motivated by our proposition above, let us subsitute 1/x for x, so that we
have

lim
x→+∞

3x2 + cos(34x) + 107 · x
2x2 + 1

= lim
x→0+

3(1/x)2 + cos(34/x) + 107 · (1/x)

2(1/x)2 + 1
.

Multiplying both top and bottom by x2, this limit is equal to

lim
x→0+

3 + x2 cos(34/x) + 107 · x
2 + x2

.

Because limits play nicely with arithmetic, we know that the limit of this ratio is
the ratio of the two limits 3 + x2 cos(34/x) + 107 · x and 2 + x2, if and only iff
both limits exist.

But that’s simple to see: because 2 + x2 is a polynomial, it’s continuous, and
thus

lim
x→0+

2 + x2 = 2 + 02 = 2.

As well, because

3− x2 + 1−7 ·x ≤ 3 + x2 cos(34/x) + 107 · x ≤ 3 + x2 + 1−7 ·x,

and both of those polynomials converge to 3 as x→ 0+, the squeeze theorem tells
us that

lim
x→0+

3 + x2 cos(34/x) + 107 · x = 3

as well.
Thus, because both limits exist, we have that

lim
x→0+

3 + x2 cos(34/x) + 107 · x
2 + x2

=
limx→0+(3 + x2 cos(34/x) + 107 · x)

limx→0+(2 + x2)
=

3

2
,

as claimed. �

One useful application of limits at infinity comes through studying the interme-
diate value theorem, which is the subject of our next section:



4 TA: PADRAIC BARTLETT

4. The Intermediate Value Theorem

Theorem 4.1. If f is a continuous function on [a, b], then f takes on every value
between f(a) and f(b) at least once.

Most uses of this theorem occur when we have a continuous function f that takes
on both positive and negative values on some interval; in this case, the intermediate
value theorem tells us that this function must have a zero between each pair of sign
changes. Basically, when you have a question that’s asking you to find zeroes of
a function, or to show that a function with prescribed endpoint behavior takes on
some other values, the IVT is the way to go.

To illustrate this, consider the following example:

Claim 4.2. If p(x) is an odd-degree polynomial, it has a root in R – i.e. there is
some x ∈ R such that p(x) = 0.

Proof. Write

p(x) = a0 + a1x+ . . .+ anx
n,

where n is an odd natural number and an > 0. (The case where an < 0 is identical
to the proof we’re about to do if you flip all of the inequalities, so we omit it here
by symmetry.)

Then, notice that

lim
x→+∞

a0 + . . .+ anx
n

xn
= lim

x→+∞

( a0
xn

+
a1
xn−1

+ . . .+
an−1
x

+ an

)
= lim

x→+∞

( a0
xn

)
+ lim

x→+∞

( a1
xn−1

)
+ . . .+ lim

x→+∞
(an)

= 0 + . . .+ 0 + an

= an,

(where the second line is justified because all of the individual limits exist.)

As a result, we know that for large positive values of x, a0+...+anx
n

xn is as close to
an as we would like. Specifically, we know that for large values of x, we have that
the distance between a0+...+anx

n

xn and an is less than, say, an/2. As a consequence,

we have specifically that a0+...+anx
n

xn is positive, for large positive values of x –
thus, for some large positive x, we have that

xn · a0 + . . .+ anx
n

xn
= (positive) · (positive) = (positive).

Similarly, because

lim
x→−∞

a0 + . . .+ anx
n

xn
= lim

x→−∞

( a0
xn

+
a1
xn−1

+ . . .+
an−1
x

+ an

)
= lim

x→−∞

( a0
xn

)
+ lim

x→−∞

( a1
xn−1

)
+ . . .+ lim

x→−∞
(an)

= 0 + . . .+ 0 + an

= an,

we also have that for large negative values of x, a0+...+anx
n

xn is as close to an as

we’d like, and thus that a0+...+anx
n

xn is positive, for large negative values of x.
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Thus, for some large negative value of x, we have that

xn · a0 + . . .+ anx
n

xn
= (negative) · (positive) = (negative).

(Notice that the fact that n was odd was used in the above calculation, to insure
that x negative implies that xn is negative.)

We have thus shown that our polynomial adopts at least one positive and one
negative value: thus, by the intermediate value theorem, it must be 0 somewhere
between these two values! Thus, our polynomial has a root, as claimed. �

5. Open, Closed, and Bounded Sets

Finally, we make something of a detour here, to quickly define open, closed, and
bounded sets:

Definition 5.1. A set X ⊂ R is called open if for any x ∈ X, there is some
neighborhood δx of x such that the entire interval (x− δx, x+ δx) lies in X.
Example 5.2.

• The sets R and ∅ are both trivially open sets.
• Any open interval (a, b) is an open set.
• The union1 of arbitrarily many open sets is open.
• The intersection 2 of finitely many open sets is open.

Definition 5.3. A set X ⊂ R is called closed if its complement3 is open.
Example 5.4.

• The sets R and ∅ are both trivially closed sets. Note that this means that
some sets can be both open and closed!
• Any closed interval [a, b] is an closed set.
• The intersection of arbitarily many closed sets is closed.
• The union of finitely many closed sets is closed.

Definition 5.5. A set X ⊂ R is bounded iff there is some value M ∈ R such that
−M ≤ x ≤M , for any x ∈ X.

We will work more closely with these definitions in future lectures: however, for
now, it suffices to note the following useful theorem, which we’ll use heavily in our
discussion of the derivative:

Theorem 5.6. (Extremal value theorem:) If f : X → Y is a continuous function,
and X is a closed and bounded subset X of R, then f attains its minima and
maxima. In other words, there are values m,M ∈ X such that for any x ∈ X,
f(m) ≤ f(x) ≤ f(M).

1The union X ∪ Y of two sets X,Y is the set {a : a ∈ X or a ∈ Y, or both.}
2The intersection X ∩ Y of two sets X,Y is the set {a : a ∈ X and a ∈ Y.}
3The complement Xc of a set X is the set {a : a /∈ X}
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