MATH 8, SECTION 1, WEEK 3 - RECITATION NOTES

TA: PADRAIC BARTLETT

ABSTRACT. These are the notes from Wednesday, Oct. 13th's lecture, where we studied different methods for analying series and determining whether they converge.

1. RANDOM QUESTION

Question 1.1. Show that any rational number can be written as a finite sum of distinct numbers of the form 1/n.

For an idea on how to approach this question, consider the following algorithm for breaking up $\frac{29}{24}$ into fractions of the form 1/n: because

$$\frac{29}{24} - \frac{1}{2} = \frac{17}{24}$$
$$\frac{1}{24} - \frac{1}{3} = \frac{9}{24}$$
$$\frac{9}{24} - \frac{1}{4} = \frac{3}{24}$$
$$\frac{3}{24} < \frac{1}{5}$$
$$\frac{3}{24} < \frac{1}{6}$$
$$\frac{3}{24} < \frac{1}{7}$$
$$\frac{3}{24} - \frac{1}{8} = 0,$$

we have that $\frac{29}{24}$ can be written as $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{8}$. How can you make this into an explicit algorithm that will always work?

2. Series: Some Useful Theorems

In our last class, we introduced the idea of "series," and studied a pair of examples. In doing so, we saw that working with series is a rather tricky thing to do: using only the definition of a series as a limit of partial sums, we had to do a lot of work to show that something as simple as the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converged.

Motivated by this, we've introduced in class a number of useful and powerful theorems, to make our calculations easier. We list them here:

(1) Comparison Test: If $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}$ are a pair of sequences such that $0 \leq a_n \leq b_n$, then the following statement is true:

$$\left(\sum_{n=1}^{\infty} b_n \text{ converges}\right) \Rightarrow \left(\sum_{n=1}^{\infty} a_n \text{ converges}\right).$$

When to use this test: when you're looking at something fairly complicated that either (1) you can bound above by something simple that converges, like $\sum 1/n^2$, or (2) that you can bound below by something simple that diverges, like $\sum 1/n$.

(2) Limit Comparison Test: If $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}$ are a pair of sequences of positive numbers such that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c \neq 0,$$

then the following statement is true:

$$\left(\sum_{n=1}^{\infty} b_n \text{ converges}\right) \Leftrightarrow \left(\sum_{n=1}^{\infty} a_n \text{ converges}\right).$$

When to use this test: whenever you see something really complicated; so, mostly, in similar situations to the normal comparison test. The advantage to the limit comparison test is that you don't need your terms to always be bigger or smaller; so long as they look the same in the limit, you can use the limit comparison test. Really useful for reducing complicated polynomial expressions to their dominant terms.

- (3) Alternating Series Test: If $\{a_n\}_{n=1}^{\infty}$ is a sequence of numbers such that • $\lim_{n\to\infty} a_n = 0$ monotonically, and
 - the a_n 's alternate in sign, then

the series $\sum_{n=1}^{\infty} a_n$ converges. When to use this test: when you have an alternating series.

(4) **Ratio Test**: If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r_1$$

then we have the following three possibilities:

- If r < 1, then the series ∑_{n=1}[∞] a_n converges.
 If r > 1, then the series ∑_{n=1}[∞] a_n diverges.
- If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: when you have something that is growing kind of like a geometric series: so when you have terms like 2^n or n!.

(5) Root Test: If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that

$$\lim_{n \to \infty} \sqrt[n]{a_n} = r$$

- then we have the following three possibilities:
 If r < 1, then the series ∑_{n=1}[∞] a_n converges.
 If r > 1, then the series ∑_{n=1}[∞] a_n diverges.
 If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: mostly, in similar situations to the ratio test. Basically, if the ratio test fails, there's a small chance that this will work instead.

 $\mathbf{2}$

3. Series: Examples

To illustrate the use of these theorems, we provide in this section a series of useful examples:

Lemma 3.1. (Comparison test) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are sequences of positive numbers, with the property that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n^2$ both converge, the sum

$$\sum_{n=1}^{\infty} a_n b_n$$

must also converge.

Proof. To see why, simply note the following inequality: because any number squared is a positive number, we have that

$$0 \le (a-b)^2$$

$$\Rightarrow \qquad 0 \le a^2 + b^2 - 2ab$$

$$\Rightarrow \qquad 2ab \le a^2 + b^2.$$

Specifically, we have that for any n, $a_n b_n \leq a_n^2 + b_n^2$. But we know that the series $\sum_{n=1}^{\infty} a_n^2 + b_n^2$ converges, by adding both sums together; thus, by the comparison test, we know that this forces

$$\sum_{n=1}^{\infty} a_n b_n$$

to converge as well.

Lemma 3.2. If the series $\sum_{n=1}^{\infty} a_n$ converges and all of the a_n 's are positive, then the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$$

converges as well.

Proof. This is simply a special case of our earlier question, if we plug in the two sequences $\{\sqrt{a_n}\}_{n=1}^{\infty}$ and $\{1/n\}_{n=1}^{\infty}$ into our earlier proof.

Lemma 3.3. (*Ratio test; alternately, limit comparison test + root test*) The series

$$\sum_{n=1}^{\infty} \frac{(n+3)^2}{3^n}$$

converges.

Proof. There are two ways to study this series: the ratio-test way (motivated by the 3^n in the denominator), and the hard way. We present both, to motivate how different methods can lead you to the same proof:

(Ratio test:) Examine the quantity a_{n+1}/a_n :

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1+3)^2}{3^{n+1}}}{\frac{(n+3)^2}{3^n}}$$
$$= \frac{(n+4)^2 3^n}{(n+3)^2 3^{n+1}}$$
$$= \left(\frac{n+4}{n+3}\right)^2 \cdot \frac{1}{3}$$
$$\Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{n+4}{n+3}\right)^2 \cdot \frac{1}{3} = \frac{1}{3};$$

because this limit exists and is less than 1, we know that our series converges.

(Limit comparison test, comparison test, and root test:) So, because the limit

$$\lim_{n \to \infty} \frac{\frac{(n+3)^2}{3^n}}{\frac{n^2}{3^n}} = \lim_{n \to \infty} \left(\frac{n+3}{n}\right)^2 = 1,$$

the limit comparison test tells us that

$$\left(\sum_{n=1}^{\infty} \frac{(n+3)^2}{3^n} \text{ converges}\right) \Leftrightarrow \left(\sum_{n=1}^{\infty} \frac{n^2}{3^n} \text{ converges}\right).$$

So: that simplifies our polynomial some. But it's not yet simple enough: so what can we do? Well: we know that for any $n \ge 2$, $n^2 \le 2^n$; so we can use the normal comparison test, which says that

$$\left(\sum_{n=1}^{\infty} \frac{2^n}{3^n} \text{ converges}\right) \Rightarrow \left(\sum_{n=1}^{\infty} \frac{n^2}{3^n} \text{ converges}\right).$$

But this series is pretty simple! If we remember our geometric series, the left hand side in fact sums to 2; if you forget that, however, you can just apply the root or ratio test to get that, because

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{2}{3}\right)^n} = \frac{2}{3} < 1,$$

the series $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$ converges, and thus (by our earlier work) our original series $\sum_{n=1}^{\infty} \frac{(n+3)^2}{3^n}$ converges as well.

Lemma 3.4. (Ratio test) The series

$$\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^{n+1}}$$

converges.

Proof. Motivated by the presence of both a n! and a 2^n , we try the ratio test:

$$\frac{a_n}{a_{n-1}} = \frac{\frac{2^n \cdot n!}{2^{n-1} \cdot (n-1)!}}{\frac{2^{n-1} \cdot (n-1)!}{(n-1)^n}}$$
$$= \frac{2^n \cdot n! \cdot (n-1)^n}{2^{n-1} \cdot (n-1)! \cdot n^{n+1}}$$
$$= \frac{2 \cdot n \cdot (n-1)^n}{n^{n+1}}$$
$$= \frac{2 \cdot (n-1)^n}{n^n}$$
$$= 2 \cdot \left(\frac{n-1}{n}\right)^n$$
$$= 2 \cdot \left(1 - \frac{1}{n}\right)^n$$

Here, we need one bit of knowledge that you may not have encountered before: the limit

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e},$$

the mathematical constant. (Historically, I'm pretty certain that that this is how e was defined; so feel free to take it as a definition of e itself.)

Basically: the relevant bit of information we have here is that $\frac{2}{e}$ is less than 1. So the ratio test tells us that this series converges!

Lemma 3.5. The series

$$\sum_{n=1}^{\infty} \frac{c^n \cdot n!}{n^n}$$

converges if c < e, and diverges if c > e.

Proof. If we retrace our original proof, swapping in c for 2 only means that at the end, we're looking at the quantity $\frac{c}{e}$ instead of $\frac{2}{e}$. So, if c < e, it converges, and if c > e, it diverges, again by the ratio test!