
MATH 8, SECTION 1, WEEK 3 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Wednesday, Oct. 13th’s lecture, where

we studied different methods for analying series and determining whether they

converge.

1. Random Question

Question 1.1. Show that any rational number can be written as a finite sum of
distinct numbers of the form 1/n.

For an idea on how to approach this question, consider the following algorithm
for breaking up 29

24 into fractions of the form 1/n: because
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we have that 29
24 can be written as 1

2 + 1
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4 + 1
8 .

How can you make this into an explicit algorithm that will always work?

2. Series: Some Useful Theorems

In our last class, we introduced the idea of “series,” and studied a pair of ex-
amples. In doing so, we saw that working with series is a rather tricky thing to
do: using only the definition of a series as a limit of partial sums, we had to do
a lot of work to show that something as simple as the alternating harmonic series∑∞

n=1
(−1)n+1

n converged.
Motivated by this, we’ve introduced in class a number of useful and powerful

theorems, to make our calculations easier. We list them here:
1
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(1) Comparison Test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences such that
0 ≤ an ≤ bn, then the following statement is true:( ∞∑

n=1

bn converges

)
⇒

( ∞∑
n=1

an converges

)
.

When to use this test: when you’re looking at something fairly complicated
that either (1) you can bound above by something simple that converges,
like

∑
1/n2, or (2) that you can bound below by something simple that

diverges, like
∑

1/n.
(2) Limit Comparison Test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences of

positive numbers such that

lim
n→∞

an
bn

= c 6= 0,

then the following statement is true:( ∞∑
n=1

bn converges

)
⇔

( ∞∑
n=1

an converges

)
.

When to use this test: whenever you see something really complicated; so,
mostly, in similar situations to the normal comparison test. The advantage
to the limit comparison test is that you don’t need your terms to always be
bigger or smaller; so long as they look the same in the limit, you can use the
limit comparison test. Really useful for reducing complicated polynomial
expressions to their dominant terms.

(3) Alternating Series Test: If {an}∞n=1 is a sequence of numbers such that
• limn→∞ an = 0 monotonically, and
• the an’s alternate in sign, then

the series
∑∞

n=1 an converges. When to use this test: when you have an
alternating series.

(4) Ratio Test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

an+1

an
= r,

then we have the following three possibilities:
• If r < 1, then the series

∑∞
n=1 an converges.

• If r > 1, then the series
∑∞

n=1 an diverges.
• If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: when you have something that is growing kind of
like a geometric series: so when you have terms like 2n or n!.

(5) Root Test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

n
√
an = r,

then we have the following three possibilities:
• If r < 1, then the series

∑∞
n=1 an converges.

• If r > 1, then the series
∑∞

n=1 an diverges.
• If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: mostly, in similar situations to the ratio test. Ba-
sically, if the ratio test fails, there’s a small chance that this will work
instead.
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3. Series: Examples

To illustrate the use of these theorems, we provide in this section a series of
useful examples:

Lemma 3.1. (Comparison test) If {an}∞n=1 and {bn}∞n=1 are sequences of positive
numbers, with the property that

∑∞
n=1 a

2
n and

∑∞
n=1 b

2
n both converge, the sum

∞∑
n=1

anbn

must also converge.

Proof. To see why, simply note the following inequality: because any number
squared is a positive number, we have that

0 ≤ (a− b)2

⇒ 0 ≤ a2 + b2 − 2ab

⇒ 2ab ≤ a2 + b2.

Specifically, we have that for any n, anbn ≤ a2n + b2n. But we know that the series∑∞
n=1 a

2
n + b2n converges, by adding both sums together; thus, by the comparison

test, we know that this forces

∞∑
n=1

anbn

to converge as well. �

Lemma 3.2. If the series
∑∞

n=1 an converges and all of the an’s are positive, then
the series

∞∑
n=1

√
an
n

converges as well.

Proof. This is simply a special case of our earlier question, if we plug in the two
sequences {√an}∞n=1 and {1/n}∞n=1 into our earlier proof. �

Lemma 3.3. (Ratio test; alternately, limit comparison test + root test) The series

∞∑
n=1

(n + 3)2

3n

converges.

Proof. There are two ways to study this series: the ratio-test way (motivated by
the 3n in the denominator), and the hard way. We present both, to motivate how
different methods can lead you to the same proof:
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(Ratio test:) Examine the quantity an+1/an:

an+1

an
=

(n+1+3)2

3n+1

(n+3)2

3n

=
(n + 4)23n

(n + 3)23n+1

=

(
n + 4

n + 3

)2

· 1

3

⇒ lim
n→∞

an+1

an
= lim

n→∞

(
n + 4

n + 3

)2

· 1

3
=

1

3
;

because this limit exists and is less than 1, we know that our series converges.
(Limit comparison test, comparison test, and root test:) So, because the limit

lim
n→∞

(n+3)2

3n

n2

3n

= lim
n→∞

(
n + 3

n

)2

= 1,

the limit comparison test tells us that( ∞∑
n=1

(n + 3)2

3n
converges

)
⇔

( ∞∑
n=1

n2

3n
converges

)
.

So: that simplifies our polynomial some. But it’s not yet simple enough: so what
can we do? Well: we know that for any n ≥ 2, n2 ≤ 2n; so we can use the normal
comparison test, which says that( ∞∑

n=1

2n

3n
converges

)
⇒

( ∞∑
n=1

n2

3n
converges

)
.

But this series is pretty simple! If we remember our geometric series, the left hand
side in fact sums to 2; if you forget that, however, you can just apply the root or
ratio test to get that, because

lim
n→∞

n

√(
2

3

)n

=
2

3
< 1,

the series
∑∞

n=1
2n

3n converges, and thus (by our earlier work) our original series∑∞
n=1

(n+3)2

3n converges as well. �

Lemma 3.4. (Ratio test) The series

∞∑
n=1

2n · n!

nn+1

converges.
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Proof. Motivated by the presence of both a n! and a 2n, we try the ratio test:

an
an−1

=
2n·n!
nn+1

2n−1·(n−1)!
(n−1)n

=
2n · n! · (n− 1)n

2n−1 · (n− 1)! · nn+1

=
2 · n · (n− 1)n

nn+1

=
2 · (n− 1)n

nn

= 2 ·
(
n− 1

n

)n

= 2 ·
(

1− 1

n

)n

Here, we need one bit of knowledge that you may not have encountered before:
the limit

lim
n→∞

(
1− 1

n

)n

=
1

e
,

the mathematical constant. (Historically, I’m pretty certain that that this is how
e was defined; so feel free to take it as a definition of e itself.)

Basically: the relevant bit of information we have here is that 2
e is less than 1.

So the ratio test tells us that this series converges! �

Lemma 3.5. The series
∞∑

n=1

cn · n!

nn

converges if c < e, and diverges if c > e.

Proof. If we retrace our original proof, swapping in c for 2 only means that at the
end, we’re looking at the quantity c

e instead of 2
e . So, if c < e, it converges, and if

c > e, it diverges, again by the ratio test! �
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