
MATH 8, SECTION 1, WEEK 3 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Monday, Oct. 11th’s lecture, where we

finished our discussion of the squeeze and monotone convergence theorems,

and started exploring series.

1. Random Question

Question 1.1. Let {an} and {bn} be sequences of positive numbers, chosen so that
the sums

∑∞
n=1

1
an

and
∑∞
n=1

1
bn

both diverge. Does the sum

∞∑
n=1

1

an + bn

also have to diverge?

2. Sequence Tools, Cont.

Last time, we ended lecture halfway through our examples of various tools we
have for studying sequences. Specifically, we had the following list:

(1) Arithmetic and Sequences:
• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then

limn→∞ an + bn = (limn→∞ an) + (limn→∞ bn).
• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then

limn→∞ anbn = (limn→∞ an) · (limn→∞ bn).
• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6=

0 for all n, then limn→∞
an
bn

= (limn→∞ an)/(limn→∞ bn).

(2) Monotone and Bounded Sequences: if the sequence {an}∞n=1 is bounded
above and nondecreasing, then it converges; similarly, if it is bounded above
and nonincreasing, it also converges.

(3) Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist
and are equal to some value l, and the sequence {cn}∞n=1 is such that an ≤
cn ≤ bn, for all n, then the limit limn→∞ cn exists and is also equal to l.

(4) Cauchy sequences A sequence is Cauchy iff it converges.

Last time, we studied examples that used the properties of arithmetic and se-
quences, and used the Cauchy property to study that certain sequences converge;
in the next two examples, we will look at how to use the two remaining tools (the
monotone convergence theorem and squeeze theorem) to study convergence.

Lemma 2.1. (Monotone convergence theorem example) If c is a real number strictly
larger than 1, then

lim
n→∞

c1/n = 1.

1
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Proof. First, notice that for any positive real number d, we have the following chain
of equivalent statements:

1 < d

⇔d < d2

⇔d2 < d3

...

⇔dn−1 < dn.

In other words, we know that the truth of any of these statements is equivalent to
any of the other. Consequently, for any d ∈ R, d > 0, we have either that all of
these statements are true: i.e. that

1 < d < d2 < . . . < dn−1 < dn,

or that all of these statements are false – i.e. that

1 ≥ d ≥ d2 ≥ . . . ≥ dn−1 ≥ dn.

Let d = c1/n. Because c > 0, we have that c1/n is positive (as it’s defined as
the unique real solution to the equation xn = c, and for c positive this equation
has only positive solutions.) So, by the above analysis, there are two possibilites:
either

1 ≥ c1/n ≥ c2/n ≥ . . . ≥ c(n−1)/n ≥ c;

i.e. 1 ≥ c, which is a contradiction to our claim that c > 1; or

1 < c1/n < c2/n < . . . < c(n−1)/n < c.

This tells us two things: first, that

1 < c1/n,∀n,

and thus that the c1/n’s are bounded from below.
Secondly, if we take the string

1 < d < d2 < . . . < dn−1 < dn

again and set d = c1/(n(n−1)), we have

c(n−1)/(n(n−1)) < cn/(n(n−1))

⇒c1/n < c1/(n−1).

So the c1/n’s are a decreasing sequence; consequently, by the monotone convergence
theorem, they have a limit!
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We claim finally that it is 1. We know that it cannot be anything less than
1, because 1 is a lower bound. Take any number L greater than 1; then, because
limn→∞ Ln =∞, there is some value of N for which LN is eventually greater than
c – i.e. there is some N such that L > c1/N .

However, the c1/n’s are decreasing! So this means that |L − c1/n| > |L − c1/N |
for any n > N , where |L− c1/N | is some fixed nonzero positive constant. But this
means that L cannot be a limit of our sequence. Thus, by process of elimination,
we know that

lim
n→∞

c1/n = 1.

�

Lemma 2.2. (Squeeze theorem example) For any two positive real numbers x, y,

lim
n→∞

(xn + yn)
1/n

= max(x, y).

Proof. The expression (xn + yn)
1/n

in the limit above is, at first glance, a rather
complicated thing to deal with; algebraically, it doesn’t look like something that
will simplify nicely, and we don’t have many other methods for dealing with such
complicated expressions. Noticing this “complicatedness” is usually the first step
in realizing that you should pursue a squeeze-theorem proof: often, when you run
into a sequence that you cannot directly analyze, it’s a sign that you *can* study
it by bounding it with simpler sequences.

Specifically: in this example, suppose that x ≥ y without any loss of generality
(as one of our two numbers has to be bigger, and the expression above is symmetric
with respect to x and y.) Then, for any n, we have the following bounds:

(xn)
1/n ≤ (xn + yn)

1/n ≤ (xn + xn)
1/n

,

where for the left bound we used the observation that yn ≥ 0, and for the right
bound we used the observation that xn ≥ yn.

These quantities are much easier to study: the left hand side is trivially

lim
n→∞

(xn)
1/n

= lim
n→∞

x = x,

and the right hand side is just

lim
n→∞

(2xn)
1/n

= lim
n→∞

21/n · x =
(

lim
n→∞

21/n
)
·
(

lim
n→∞

x
)

= 1 · x = x,

by our earlier example.

So: we have exhibited a pair of sequences that bound (xn + yn)
1/n

from the left
and right, and both of which go to max(x, y); thus, by the squeeze theorem, we
know that

lim
n→∞

(xn + yn)
1/n

= max(x, y)

as well. �

3. Series: Introduction

Definition 3.1. A sequence is called summable if the sequence {sn}∞n=1 of partial
sums

sn := a1 + . . . an
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converges. If it does, we then call the limit of this sequence the sum of the an, and
denote this quantity by writing

∞∑
n=1

an.

We will often denote such infinite sums as series.

We’ve already encountered a series in this class; specifically, we studied the series∑∞
n=1

1
n2 as an example of when to use the Cauchy criterion on Friday of week 2.

There, we studied this series simply by treating it as a sequence of its partial sums.
Consequently, we might hope that we can transfer a lot of our earlier intuition

about sequences to some ideas about series! However, as it turns out, this is a
rather hard thing to do: series are, in some senses, much more delicate things than
sequences. For example, we can have series that are (on one hand) made out of very
small terms that go to zero, and yet (on the other hand) their sums can explode to
infinity:

Lemma 3.2. If {an}∞n=1 is the sequence defined by

an =
1

2k
, for n ∈ [2k, 2k+1 − 1],

then we simultaneously have the following two conditions:

• limn→∞ an = 0.
• The series

∑∞
n=1 an does not converge.

Proof. As the an’s are decreasing and a2k = 1
2k

, it’s clear that they converge to 0.
However, at the same time, we have that

a1 = 1,

a2 = a3 =
1

2
,

a4 = a5 = a6 = a7 =
1

4
,

a8 = . . . a15 =
1

8
,

...

and thus that
∞∑
n=1

an = (a1) + (a2 + a3) + (a4 + . . .+ a7) + (a8 + . . .+ a15) + . . .

= 1 + 1 + 1 + 1 + . . . ,

which clearly fails to converge. �

As we saw in the above example, it can be somewhat difficult to simply “eyeball”
a sequence and tell if its associated series will converge; this is in contrast to the
situation with determining where a sequence would converge to, which we could
often “guess” just by looking at it. Series are strange beasts, as we will illustrate
further in the next section:
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4. Can You Rearrange Terms in a Series?

By definition, the infinte sum
∑∞
n=1 an denotes the limit

lim
n→∞

a1 + a2 + . . . an.

In the above sum, we assume that when we take this limit, we are always adding
up the an’s “in order” – i.e. we don’t look at the limit

lim
n→∞

a1 + a2 + a4 + a3 + a6 + a8 + a5 + a10 + a12 + . . . a2n−1 + a4n−2 + a4n,

where we’re adding up one odd term for every two even terms. Why don’t we?
After all, in the case of finite sums, the order of addition doesn’t matter at all: e.g.
1 + 2 + 3 = 2 + 1 + 3 = 3 + 2 + 1, regardless of how you add it up. So: does this
extend to the case of infinte sums?

To partially answer this question, consider the sequence

∞∑
n=1

(1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
. . .

We first make the following claim about this sequence:

Lemma 4.1. The series
∞∑
n=1

(1)n+1

n

converges to some positive number L > 0.

Proof. So: we seek to show that the sequence of the partial sums

n∑
k=1

(1)k+1

k

converges to some positive number. To do this: examine the partial sums where n
is even. Each of these sums is of the form

n∑
k=1

(1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .+

1

n− 1
− 1

n
.

Grouping terms in pairs, we have in fact that this sum is just

n∑
k=1

(1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .+

1

n− 1
− 1

n

=
1

1 · 2
+

1

3 · 4
+

5 · 6
+

. . .+
1

(n− 1)(n)

≤ 1

12
+

1

32
+

1

52
+ . . .

1

(n− 1)2

≤
∞∑
k=1

1

k2
=
π2

6
,

and thus that these partial sums are all bounded above by π2

6 .
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As well, the difference between
∑n
k=1

(1)k+1

k and
∑n+2
k=1

(1)k+1

k is just the term

1

n+ 1
− 1

n+ 2
,

which is strictly positive; so we have that the sequence of even partial sums is (1)
bounded above and (2) increasing! So it converges to some limit L > 0.

Thus, we know that the sequence

(‡)
0∑
k=1

(1)k+1

k
,

0∑
k=1

(1)k+1

k
,

2∑
k=1

(1)k+1

k
,

2∑
k=1

(1)k+1

k
,

4∑
k=1

(1)k+1

k
,

4∑
k=1

(1)k+1

k
. . .

where we just repeat each even sum twice, must also converge to L. As well, we
know that the sequence

(?) 0, 1, 0,
1

3
, 0,

1

5
, 0,

1

7
, 0, . . .

converges to 0; so, because we can perform arithmetic on limits, we have in fact
that the sequence formed by summing these two sequences (‡) and (?) must also
converge.

But the sequence formed by adding (‡) and (?) is just the sequence of partial
sums of

∞∑
n=1

(1)n+1

n
;

thus, this series must converge to L+ 0 = L, as claimed. �

So: why do we mention this series at all? Because, as it turns out, this sequence
is an excellent candidate for showing why you cannot arbitrarily rearrange terms
in a series! For, if you could, we would be able to write

∞∑
n=1

(1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
. . .

= 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− 1

14
− 1

16
. . .

But, if we group terms together in the above rearrangement, we would have that

∞∑
n=1

(1)n+1

n
= 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− 1

14
− 1

16
. . .

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+

(
1

7
− 1

14

)
− 1

16
. . .

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

14
− 1

16
. . .

=
1

2
·
(

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
. . .

)
=

1

2
·
∞∑
n=1

(1)n+1

n
.
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Thus, we have that this sum must be 0, as 0 is the only number that’s equal
to half of itself. But we just showed that the limit of these partial sums is strictly
positive! Thus, we have a contradiction; consequently, we must have that – in some
cases, at least – rearranging the terms of a series can completely change what it
converges to.

Crazy, right?


	1. Random Question
	2. Sequence Tools, Cont.
	3. Series: Introduction
	4. Can You Rearrange Terms in a Series?

