MATH 8, SECTION 1, WEEK 2 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract

These are the notes from Friday, Oct. 8th's lecture. In this talk, we study sequences.

1. Random Question

Question 1.1. First, prove that you cannot cover \mathbb{R} with disjoint circles of positive radii. Then, find a way to cover \mathbb{R}^{3} with disjoint circles of positive radii!

2. Sequences: Working from the Basics

In our last lecture, we introduced the notion of convergence:
Definition 2.1. A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to some value λ if, for any distance ϵ, the a_{n} 's are eventually within ϵ of λ. To put it more formally, $\lim _{n \rightarrow \infty} a_{n}=\lambda$ iff for any distance ϵ, there is some cutoff point N such that for any n greater than this cutoff point, a_{n} must be within ϵ of our limit λ.

In symbols:

$$
\lim _{n \rightarrow \infty} a_{n}=\lambda \operatorname{iff}(\forall \epsilon)(\exists N)(\forall n>N)\left|a_{n}-\lambda\right|<\epsilon
$$

Most people are generally pretty good with developing an "intuition" for what convergence means; when it comes to actually proving that a sequence converges, however, it's easy to get confused. How do you find your N ? What does it mean to have actually proved convergence?

In general, proofs that a given sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to some value L will go as follows:

- First, examine the quantity $\left|a_{n}-L\right|$, and try to come up with a very simple upper bound that depends on n and goes to zero. Example bounds we'd love to run into: $1 / n, 1 / n^{2}, 1 / \log (\log (n))$.
- Using this upper bound, given $\epsilon>0$, determine a value of N such that whenever $n>N$, our simple bound is less than ϵ.
- Combine the two above results to show that for any ϵ, you can find a cutoff point N such that for any $n>N,\left|a_{n}-L\right|<\epsilon$.
We work one example of this method here:

Claim 2.2.

$$
\lim _{n \rightarrow \infty} \sqrt{n+1}-\sqrt{n}=0
$$

Proof. As suggested above, let's examine the quantity $|\sqrt{n+1}-\sqrt{n}-0|$.

$$
\begin{aligned}
|\sqrt{n+1}-\sqrt{n}-0| & =\sqrt{n+1}-\sqrt{n} \\
& =\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}-\sqrt{n}} \\
& =\frac{n+1-n}{\sqrt{n+1}-\sqrt{n}} \\
& =\frac{1}{\sqrt{n+1}-\sqrt{n}} \\
& <\frac{1}{\sqrt{n}} .
\end{aligned}
$$

This looks rather simple: so let's see if we can use it to find a value of N.
Take any $\epsilon<0$. If we want to make $\frac{1}{\sqrt{n}}<\epsilon$, we merely need to pick N such that $\frac{1}{\sqrt{N}}<\epsilon$, and then select $n>N$.

This then tells us that for any $\epsilon>0$, we can find a N such that for any $n>N$, we have

$$
|\sqrt{n+1}-\sqrt{n}-0|<\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}<\epsilon
$$

which is the definition of convergence. So we've proven that $\lim _{n \rightarrow \infty} \sqrt{n+1}-\sqrt{n}=$ 0.

3. Sequences: Useful Tools

The above method will almost always work; often, however, it can take a lot of work and is ponderous. Consequently, we've developed the following tools to make our lives easier:
(1) Arithmetic and Sequences:

- Additivity of sequences: if $\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}$ both exist, then $\lim _{n \rightarrow \infty} a_{n}+b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)+\left(\lim _{n \rightarrow \infty} b_{n}\right)$.
- Multiplicativity of sequences: if $\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}$ both exist, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} b_{n}\right)$.
- Quotients of sequences: if $\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}$ both exist, and $b_{n} \neq$ 0 for all n, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\left(\lim _{n \rightarrow \infty} a_{n}\right) /\left(\lim _{n \rightarrow \infty} b_{n}\right)$.
(2) Monotone and Bounded Sequences: if the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded above and nondecreasing, then it converges; similarly, if it is bounded above and nonincreasing, it also converges.
(3) Squeeze theorem for sequences: if $\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}$ both exist and are equal to some value l, and the sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ is such that $a_{n} \leq$ $c_{n} \leq b_{n}$, for all n , then the limit $\lim _{n \rightarrow \infty} c_{n}$ exists and is also equal to l.
(4) Cauchy sequences A sequence is Cauchy ${ }^{1}$ iff it converges.

[^0]This next section consists of example of these tools in action:

4. Sequences: Worked Examples

Claim 4.1. (Arithmetic and Sequences example) The sequence $a_{1}=1, a_{n+1}=$ $\sqrt{1+a_{n}^{2}}$ does not converge.

Proof. We proceed by contradiction. Suppose that some limit L of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ exists. Then, examine the limit

$$
\lim _{n \rightarrow \infty} a_{n}^{2}
$$

Because convergent sequences are multiplicative, we know that

$$
\lim _{n \rightarrow \infty} a_{n}^{2}=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} a_{n}\right)=L \cdot L=L^{2}
$$

However, we can also use the recursive definition of the a_{n} 's to see that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}^{2} & =\lim _{n \rightarrow \infty}\left(\sqrt{1+a_{n-1}^{2}}\right)^{2} \\
& =\lim _{n \rightarrow \infty}\left(1+a_{n-1}^{2}\right) \\
& =\left(\lim _{n \rightarrow \infty} 1\right)+\left(\lim _{n \rightarrow \infty} a_{n-1}^{2}\right) \\
& =1+\left(\lim _{n \rightarrow \infty} a_{n-1}^{2}\right) \\
& =1+\left(\lim _{n \rightarrow \infty} a_{n-1}\right) \cdot\left(\lim _{n \rightarrow \infty} a_{n-1}\right) .
\end{aligned}
$$

However, we know that $\lim _{n \rightarrow \infty} a_{n-1}=\lim _{n \rightarrow \infty} a_{n}$, because the two sequences are the same (just shifted over one place) and thus have the same behavior at infinity. So we have in fact that

$$
\lim _{n \rightarrow \infty} a_{n}^{2}=1+\left(\lim _{n \rightarrow \infty} a_{n-1}\right) \cdot\left(\lim _{n \rightarrow \infty} a_{n-1}\right)=1+L^{2}
$$

and thus that $L^{2}=1+L^{2}$, a contradiction.
Claim 4.2. (Cauchy sequence example) The sequence

$$
a_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}
$$

converges.
Proof. To show that this sequence converges, we will use the Cauchy convergence tool, which tells us that sequences converge iff they are Cauchy.

How do we prove that a sequence is Cauchy? As it turns out, we can use a similar blueprint to the methods we used to show that a sequence converges:

- First, examine the quantity $\left|a_{m}-a_{n}\right|$, and try to come up with a very simple upper bound that depends on m and n and goes to zero. Example bounds we'd love to run into: $\frac{1}{m n}, \frac{1}{n}, \frac{1}{m^{4} \log (n)}$. Things that won't work: $\frac{n}{m}$ (if n is really big compared to m, we're doomed!), $\frac{m}{n^{34}}$ (same!), 4 .
- Using this upper bound, given $\epsilon>0$, determine a value of N such that whenever m and $n>N$, our simple bound is less than ϵ.
- Combine the two above results to show that for any ϵ, you can find a cutoff point N such that for any $m, n>N,\left|a_{m}-a_{n}\right|<\epsilon$.
Let's apply the above blueprint, and study $\left|a_{m}-a_{n}\right|$. Assume that $m>n$ here; the other case will look the exact same (if you flip m and n throughout the proof), so we omit it by symmetry.

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|\sum_{k=1}^{m} \frac{1}{k^{2}}-\sum_{k=1}^{n} \frac{1}{k^{2}}\right| \\
& =\sum_{k=n+1}^{m} \frac{1}{k^{2}} \\
& <\sum_{k=n+1}^{m} \frac{1}{k(k-1)} \\
& =\sum_{k=n+1}^{m} \frac{1}{k-1}-\frac{1}{k} \\
& =\sum_{k=n+1}^{m} \frac{1}{k-1}-\sum_{k=n+1}^{m} \frac{1}{k} \\
& =\sum_{k=n}^{m-1} \frac{1}{k}-\sum_{k=n+1}^{m} \frac{1}{k} \\
& =\frac{1}{n}-\frac{1}{m} \\
& <\frac{1}{n}+\frac{1}{m}
\end{aligned}
$$

This looks fairly simple!
Moving onto the second step: given $\epsilon>0$, we want to force this quantity $\frac{1}{n}+\frac{1}{m}<$ ϵ. How can we do this? Well: if $n, m>N$, we have that $\frac{1}{n}+\frac{1}{m}<\frac{2}{N}$; so it suffices to pick N such that $\frac{2}{N}<\epsilon$.

Thus, we've shown that for any $\epsilon>0$ we can find a N such that for any $m, n>N$,

$$
\left|a_{m}-a_{n}\right|<\frac{1}{n}+\frac{1}{m}<\frac{2}{N}<\epsilon
$$

But this just means that our sequence is Cauchy! So, because all Cauchy sequences converge, we've proven that our sequence converges.

[^0]: ${ }^{1}$ We say that a sequence is Cauchy if and only if for every $\epsilon>0$ there is a natural number N such that for every $m, n \geq N$

 $$
 \left|a_{m}-a_{n}\right|<\epsilon
 $$

 You can think of this condition as saying that Cauchy sequences "settle down" in the limit i.e. that if you look at points far along enough on a Cauchy sequence, they all get fairly close to each other.

