MATH 8, SECTION 1, WEEK 2 - RECITATION NOTES

TA: PADRAIC BARTLETT

ABSTRACT. These are the notes from Friday, Oct. 8th's lecture. In this talk, we study sequences.

1. RANDOM QUESTION

Question 1.1. First, prove that you cannot cover \mathbb{R} with disjoint circles of positive radii. Then, find a way to cover \mathbb{R}^3 with disjoint circles of positive radii!

2. Sequences: Working from the Basics

In our last lecture, we introduced the notion of convergence:

Definition 2.1. A sequence $\{a_n\}_{n=1}^{\infty}$ converges to some value λ if, for any distance ϵ , the a_n 's are eventually within ϵ of λ . To put it more formally, $\lim_{n\to\infty} a_n = \lambda$ iff for any distance ϵ , there is some cutoff point N such that for any n greater than this cutoff point, a_n must be within ϵ of our limit λ .

In symbols:

$$\lim_{n \to \infty} a_n = \lambda \text{ iff } (\forall \epsilon) (\exists N) (\forall n > N) |a_n - \lambda| < \epsilon.$$

Most people are generally pretty good with developing an "intuition" for what convergence means; when it comes to actually proving that a sequence converges, however, it's easy to get confused. How do you find your N? What does it mean to have actually proved convergence?

In general, proofs that a given sequence $\{a_n\}_{n=1}^{\infty}$ converges to some value L will go as follows:

- First, examine the quantity $|a_n L|$, and try to come up with a very simple upper bound that depends on n and goes to zero. Example bounds we'd love to run into: $1/n, 1/n^2, 1/\log(\log(n))$.
- Using this upper bound, given $\epsilon > 0$, determine a value of N such that whenever n > N, our simple bound is less than ϵ .
- Combine the two above results to show that for any ϵ , you can find a cutoff point N such that for any n > N, $|a_n L| < \epsilon$.

We work one example of this method here:

Claim 2.2.

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = 0.$$

Proof. As suggested above, let's examine the quantity $|\sqrt{n+1} - \sqrt{n} - 0|$.

$$\begin{aligned} |\sqrt{n} + 1 - \sqrt{n} - 0| &= \sqrt{n} + 1 - \sqrt{n} \\ &= \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} - \sqrt{n}} \\ &= \frac{n+1-n}{\sqrt{n+1} - \sqrt{n}} \\ &= \frac{1}{\sqrt{n+1} - \sqrt{n}} \\ &< \frac{1}{\sqrt{n}}. \end{aligned}$$

This looks rather simple: so let's see if we can use it to find a value of N. Take any $\epsilon < 0$. If we want to make $\frac{1}{\sqrt{n}} < \epsilon$, we merely need to pick N such that $\frac{1}{\sqrt{N}} < \epsilon$, and then select n > N.

This then tells us that for any $\epsilon > 0$, we can find a N such that for any n > N, we have

$$|\sqrt{n+1} - \sqrt{n} - 0| < \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} < \epsilon,$$

which is the definition of convergence. So we've proven that $\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n} = 0.$

3. Sequences: Useful Tools

The above method will almost always work; often, however, it can take a lot of work and is ponderous. Consequently, we've developed the following tools to make our lives easier:

(1) Arithmetic and Sequences:

- Additivity of sequences: if $\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n$ both exist, then $\lim_{n\to\infty} a_n + b_n = (\lim_{n\to\infty} a_n) + (\lim_{n\to\infty} b_n).$
- Multiplicativity of sequences: if $\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n$ both exist, then $\lim_{n\to\infty} a_n b_n = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} b_n).$
- Quotients of sequences: if $\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n$ both exist, and $b_n \neq 0$ for all n, then $\lim_{n\to\infty} \frac{a_n}{b_n} = (\lim_{n\to\infty} a_n)/(\lim_{n\to\infty} b_n)$.
- (2) Monotone and Bounded Sequences: if the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded above and nondecreasing, then it converges; similarly, if it is bounded above and nonincreasing, it also converges.
- (3) Squeeze theorem for sequences: if $\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n$ both exist and are equal to some value l, and the sequence $\{c_n\}_{n=1}^{\infty}$ is such that $a_n \leq c_n \leq b_n$, for all n, then the limit $\lim_{n\to\infty} c_n$ exists and is also equal to l.
- (4) Cauchy sequences A sequence is Cauchy¹ iff it converges.

$$|a_m - a_n| < \epsilon.$$

¹We say that a sequence is **Cauchy** if and only if for every $\epsilon > 0$ there is a natural number N such that for every $m, n \ge N$

You can think of this condition as saying that Cauchy sequences "settle down" in the limit – i.e. that if you look at points far along enough on a Cauchy sequence, they all get fairly close to each other.

This next section consists of example of these tools in action:

4. Sequences: Worked Examples

Claim 4.1. (Arithmetic and Sequences example) The sequence $a_1 = 1, a_{n+1} = \sqrt{1 + a_n^2}$ does not converge.

Proof. We proceed by contradiction. Suppose that some limit L of the sequence $\{a_n\}_{n=1}^{\infty}$ exists. Then, examine the limit

$$\lim_{n \to \infty} a_n^2.$$

Because convergent sequences are multiplicative, we know that

$$\lim_{n \to \infty} a_n^2 = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} a_n) = L \cdot L = L^2.$$

However, we can also use the recursive definition of the a_n 's to see that

$$\lim_{n \to \infty} a_n^2 = \lim_{n \to \infty} \left(\sqrt{1 + a_{n-1}^2} \right)^2$$
$$= \lim_{n \to \infty} (1 + a_{n-1}^2)$$
$$= (\lim_{n \to \infty} 1) + (\lim_{n \to \infty} a_{n-1}^2)$$
$$= 1 + (\lim_{n \to \infty} a_{n-1})$$
$$= 1 + (\lim_{n \to \infty} a_{n-1}) \cdot (\lim_{n \to \infty} a_{n-1})$$

However, we know that $\lim_{n\to\infty} a_{n-1} = \lim_{n\to\infty} a_n$, because the two sequences are the same (just shifted over one place) and thus have the same behavior at infinity. So we have in fact that

$$\lim_{n \to \infty} a_n^2 = 1 + (\lim_{n \to \infty} a_{n-1}) \cdot (\lim_{n \to \infty} a_{n-1}) = 1 + L^2,$$

and thus that $L^2 = 1 + L^2$, a contradiction.

Claim 4.2. (Cauchy sequence example) The sequence

$$a_n = \sum_{k=1}^n \frac{1}{k^2}$$

converges.

Proof. To show that this sequence converges, we will use the Cauchy convergence tool, which tells us that sequences converge iff they are Cauchy.

How do we prove that a sequence is Cauchy? As it turns out, we can use a similar blueprint to the methods we used to show that a sequence converges:

- First, examine the quantity $|a_m a_n|$, and try to come up with a very simple upper bound that depends on m and n and goes to zero. Example bounds we'd love to run into: $\frac{1}{mn}, \frac{1}{n}, \frac{1}{m^4 \log(n)}$. Things that won't work: $\frac{n}{m}$ (if n is really big compared to m, we're doomed!), $\frac{m}{n^{34}}$ (same!), 4.
- Using this upper bound, given $\epsilon > 0$, determine a value of N such that whenever m and n > N, our simple bound is less than ϵ .

• Combine the two above results to show that for any ϵ , you can find a cutoff point N such that for any m, n > N, $|a_m - a_n| < \epsilon$.

Let's apply the above blueprint, and study $|a_m - a_n|$. Assume that m > n here; the other case will look the exact same (if you flip m and n throughout the proof), so we omit it by symmetry.

$$|a_m - a_n| = \left| \sum_{k=1}^m \frac{1}{k^2} - \sum_{k=1}^n \frac{1}{k^2} \right|$$
$$= \sum_{k=n+1}^m \frac{1}{k^2}$$
$$< \sum_{k=n+1}^m \frac{1}{k(k-1)}$$
$$= \sum_{k=n+1}^m \frac{1}{k-1} - \frac{1}{k}$$
$$= \sum_{k=n+1}^m \frac{1}{k-1} - \sum_{k=n+1}^m \frac{1}{k}$$
$$= \sum_{k=n}^{m-1} \frac{1}{k} - \sum_{k=n+1}^m \frac{1}{k}$$
$$= \frac{1}{n} - \frac{1}{m}$$
$$< \frac{1}{n} + \frac{1}{m}.$$

This looks fairly simple!

Moving onto the second step: given $\epsilon > 0$, we want to force this quantity $\frac{1}{n} + \frac{1}{m} < \epsilon$. How can we do this? Well: if n, m > N, we have that $\frac{1}{n} + \frac{1}{m} < \frac{2}{N}$; so it suffices to pick N such that $\frac{2}{N} < \epsilon$.

Thus, we've shown that for any $\epsilon > 0$ we can find a N such that for any m, n > N,

$$|a_m - a_n| < \frac{1}{n} + \frac{1}{m} < \frac{2}{N} < \epsilon.$$

But this just means that our sequence is Cauchy! So, because all Cauchy sequences converge, we've proven that our sequence converges. $\hfill\square$

4