
MATH 8, SECTION 1, WEEK 2 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Friday, Oct. 8th’s lecture. In this talk,

we study sequences.

1. Random Question

Question 1.1. First, prove that you cannot cover R with disjoint circles of positive
radii. Then, find a way to cover R3 with disjoint circles of positive radii!

2. Sequences: Working from the Basics

In our last lecture, we introduced the notion of convergence:

Definition 2.1. A sequence {an}∞n=1 converges to some value λ if, for any distance
ε, the an’s are eventually within ε of λ. To put it more formally, limn→∞ an = λ
iff for any distance ε, there is some cutoff point N such that for any n greater than
this cutoff point, an must be within ε of our limit λ.

In symbols:

lim
n→∞

an = λ iff (∀ε)(∃N)(∀n > N) |an − λ| < ε.

Most people are generally pretty good with developing an “intuition” for what
convergence means; when it comes to actually proving that a sequence converges,
however, it’s easy to get confused. How do you find your N? What does it mean
to have actually proved convergence?

In general, proofs that a given sequence {an}∞n=1 converges to some value L will
go as follows:

• First, examine the quantity |an−L|, and try to come up with a very simple
upper bound that depends on n and goes to zero. Example bounds we’d
love to run into: 1/n, 1/n2, 1/ log(log(n)).
• Using this upper bound, given ε > 0, determine a value of N such that

whenever n > N , our simple bound is less than ε.
• Combine the two above results to show that for any ε, you can find a cutoff

point N such that for any n > N , |an − L| < ε.

We work one example of this method here:

Claim 2.2.

lim
n→∞

√
n+ 1−

√
n = 0.
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Proof. As suggested above, let’s examine the quantity |
√
n+ 1−

√
n− 0|.

|
√
n+ 1−

√
n− 0| =

√
n+ 1−

√
n

=
(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1−
√
n

=
n+ 1− n√
n+ 1−

√
n

=
1√

n+ 1−
√
n

<
1√
n
.

This looks rather simple: so let’s see if we can use it to find a value of N .
Take any ε < 0. If we want to make 1√

n
< ε, we merely need to pick N such

that 1√
N
< ε, and then select n > N .

This then tells us that for any ε > 0, we can find a N such that for any n > N ,
we have

|
√
n+ 1−

√
n− 0| < 1√

n
<

1√
N

< ε,

which is the definition of convergence. So we’ve proven that limn→∞
√
n+ 1−

√
n =

0. �

3. Sequences: Useful Tools

The above method will almost always work; often, however, it can take a lot of
work and is ponderous. Consequently, we’ve developed the following tools to make
our lives easier:

(1) Arithmetic and Sequences:
• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then

limn→∞ an + bn = (limn→∞ an) + (limn→∞ bn).
• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then

limn→∞ anbn = (limn→∞ an) · (limn→∞ bn).
• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6=

0 for all n, then limn→∞
an

bn
= (limn→∞ an)/(limn→∞ bn).

(2) Monotone and Bounded Sequences: if the sequence {an}∞n=1 is bounded
above and nondecreasing, then it converges; similarly, if it is bounded above
and nonincreasing, it also converges.

(3) Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist
and are equal to some value l, and the sequence {cn}∞n=1 is such that an ≤
cn ≤ bn, for all n, then the limit limn→∞ cn exists and is also equal to l.

(4) Cauchy sequences A sequence is Cauchy1 iff it converges.

1We say that a sequence is Cauchy if and only if for every ε > 0 there is a natural number N
such that for every m,n ≥ N

|am − an| < ε.

You can think of this condition as saying that Cauchy sequences “settle down” in the limit –

i.e. that if you look at points far along enough on a Cauchy sequence, they all get fairly close to
each other.
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This next section consists of example of these tools in action:

4. Sequences: Worked Examples

Claim 4.1. (Arithmetic and Sequences example) The sequence a1 = 1, an+1 =√
1 + a2n does not converge.

Proof. We proceed by contradiction. Suppose that some limit L of the sequence
{an}∞n=1 exists. Then, examine the limit

lim
n→∞

a2n.

Because convergent sequences are multiplicative, we know that

lim
n→∞

a2n = ( lim
n→∞

an) · ( lim
n→∞

an) = L · L = L2.

However, we can also use the recursive definition of the an’s to see that

lim
n→∞

a2n = lim
n→∞

(√
1 + a2n−1

)2

= lim
n→∞

(1 + a2n−1)

= ( lim
n→∞

1) + ( lim
n→∞

a2n−1)

= 1 + ( lim
n→∞

a2n−1)

= 1 + ( lim
n→∞

an−1) · ( lim
n→∞

an−1).

However, we know that limn→∞ an−1 = limn→∞ an, because the two sequences are
the same (just shifted over one place) and thus have the same behavior at infinity.
So we have in fact that

lim
n→∞

a2n = 1 + ( lim
n→∞

an−1) · ( lim
n→∞

an−1) = 1 + L2,

and thus that L2 = 1 + L2, a contradiction. �

Claim 4.2. (Cauchy sequence example) The sequence

an =
n∑

k=1

1

k2

converges.

Proof. To show that this sequence converges, we will use the Cauchy convergence
tool, which tells us that sequences converge iff they are Cauchy.

How do we prove that a sequence is Cauchy? As it turns out, we can use a
similar blueprint to the methods we used to show that a sequence converges:

• First, examine the quantity |am − an|, and try to come up with a very
simple upper bound that depends on m and n and goes to zero. Example
bounds we’d love to run into: 1

mn ,
1
n ,

1
m4 log(n) . Things that won’t work: n

m

(if n is really big compared to m, we’re doomed!), m
n34 (same!), 4.

• Using this upper bound, given ε > 0, determine a value of N such that
whenever m and n > N , our simple bound is less than ε.
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• Combine the two above results to show that for any ε, you can find a cutoff
point N such that for any m,n > N , |am − an| < ε.

Let’s apply the above blueprint, and study |am − an|. Assume that m > n here;
the other case will look the exact same (if you flip m and n throughout the proof),
so we omit it by symmetry.

|am − an| =

∣∣∣∣∣
m∑

k=1

1

k2
−

n∑
k=1

1

k2

∣∣∣∣∣
=

m∑
k=n+1

1

k2

<

m∑
k=n+1

1

k(k − 1)

=

m∑
k=n+1

1

k − 1
− 1

k

=

m∑
k=n+1

1

k − 1
−

m∑
k=n+1

1

k

=

m−1∑
k=n

1

k
−

m∑
k=n+1

1

k

=
1

n
− 1

m

<
1

n
+

1

m
.

This looks fairly simple!
Moving onto the second step: given ε > 0, we want to force this quantity 1

n + 1
m <

ε. How can we do this? Well: if n,m > N , we have that 1
n + 1

m < 2
N ; so it suffices

to pick N such that 2
N < ε.

Thus,we’ve shown that for any ε > 0 we can find a N such that for any m,n > N ,

|am − an| <
1

n
+

1

m
<

2

N
< ε.

But this just means that our sequence is Cauchy! So, because all Cauchy sequences
converge, we’ve proven that our sequence converges. �
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