
MATH 8, SECTION 1, WEEK 1 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Wednesday, Sept. 29th’s lecture. In

this talk, we continue our discussion on proofs by contradiction, and examine

proofs by induction.

1. Random Question

Question 1.1. For any n in N, can you find a way to tile1 the shape

n

2n

2n

n

n
n

with triominoes made out of three 1x1 squares of the form ?

2. Administrivia and Announcements

• Class times will remain at 2-3 MWF for the quarter; while some other time
slots are marginally better, none of them are sufficiently better to clear a
class change with the Registrar (and running two sections appears to be
an impossibility as well.) Sorry, CS1 students! As always, any students
who can’t make Math 8 consistently are welcome to attend as unregistered
students when they can, and read the course notes online.
• Homework policy! In your Math 1 HW,

– you cannot cite the Math 8 notes or lectures! Your section TA will
have no idea what you’re talking about.

– you can use your Math 8 notes for reference and inspiration! I.e.
direct copying of the notes = bad, but using them to remember how
a proof goes or some clever trick, and then writing up the results in
your own words = good.

1A tiling of some region R with some shape S is a way of covering all of the points in R with
translations, rotations, and reflections of the shape S, so that (1) all of the copies of S lie inside

of R, and (2) none of the copies of S overlap (except for possibly on their boundaries.)
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3. Proofs by Contradiction, Part II

Last time, we described proofs by contradiction as the following process: suppose
we want to prove that some statement P is true. How can we do this? Well, there
are only two possiblities: either P is true, or¬P is. So: if we show that ¬P is
impossible – in other words, that assuming ¬P leads to a contradiction – then by
process of elimination we have tht P must hold!

On Monday, we gave one example of a proof by contradiction; today, we have
two more proofs to further illustrate the method.

Lemma 3.1. (Euclid) There are infinitely many prime numbers.

Proof. (N.b.: for the entertainment of those who’ve already encountered Euclid’s
proof about prime numbers, the proof below is written in the “way of prime” – i.e.
all of the words below contain prime numbers of letters. Silly, yes. But fun!)

Suppose not: in other words, suppose n prime numbers exist, for n ∈ N. Label
these prime numbers

p1, p2, . . . pn,

and examine the product

p1 · p2 · . . . · pn.

For any pi, the product p1 · . . . · pn divided by pi is an integer. So: if we add one
to the product

p1 · p2 · . . . · pn,

we get a sum

(p1 · p2 · . . . · pn) + 1

for which all of the pi’s are *not* factors! So, there are two possibilities:

(1) (p1 · p2 · . . . · pn) + 1 is prime (and not in our set – contradiction!), or
(2) (p1 · p2 · . . . · pn) + 1 has to contain new prime factors (again, these aren’t

in our set – contradiction!)

So there are infinitudes of prime numbers! �

. . . yeah, I’m a nerd. Here’s another proof by contradiction!

Lemma 3.2. If a, b, and c are all odd integers, then there cannot be a rational
solution to the equation

ax2 + bx + c = 0.

Proof. Suppose not: that there is some rational number p/q ∈ Q with GCD(p, q) =
1 and

a

(
p

q

)2

+ b

(
p

q

)
+ c = 0.

Then, if we were to multiply through by q2, we would have

ap2 + bpq + cq2 = 0.

Then, because GCD(p, q) = 1, there are only three possibilities:
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(1) p is even and q is odd. In this case, the left hand side of our above equation
is (if we only consider the parity2)

(odd · even · even) + (odd · even · odd) + (odd · odd · odd) = even + even + odd = odd,

and thus not equal to zero.
(2) p is odd and q is even. In this case, similar parity arguments to the above

force the quantity ap2 + bpq + cq2 to again be odd, and thus not equal to
zero.

(3) Both p and q are odd. In this final case, we again have that the quantity
ap2 + bpq + cq2 is odd, and thus nonzero.

In all three cases, we arrived at a contradiction; thus, we know that no such rational
number can exist! �

These examples, one hopes, have illustrated some of the power and utility in
proofs by contradiction; however, it bears noting that contradiction is not *always*
the way to prove something! Consider the following cautionary proof:

Lemma 3.3. 0 · x = 0, for any real number x.

Proof. Suppose (for contradiction) that there is some x such that 0·x 6= 0. However,
as

0 · x = (0 + 0) · x (axiom of additive identity)

= 0 · x + 0 · x (distributive axiom)

⇒ 0 · x− 0 · x = 0 · x + 0 · x− 0 · x (existence of additive inverses)

⇒ 0 = 0 · x + 0 (definition of additive inverses)

= 0 · x (definition of additive identity)

So 0 = 0 · x, which contradicts our assumption that 0 6= 0 · x. So we’ve proven that
0 · x = 0. �

The flaw in the above proof was that contradiction was compeletely unnec-
essary! In fact, if we omit the first and second to last sentences, we would have a
normal, direct proof of our claim; the only thing that our “proof by contradiction”
language gave us was extra words and confusing phrasing. So, when you can prove
something directly, do so! Proofs by contradiction are usually best attempted in
situations where it seems difficult to construct a solution, or when you’re dealing
with negative claims (i.e. that no object exists to satisfy some given property.)

4. Proofs by Induction

Sometimes, in mathematics, we will want to prove the truth of some statement
P (n) that depends on some variable n. For example:

• P (n) = “The sum of the first n natural numbers is n(n+1)
2 .”

• P (n) = This week’s random question: i.e. “The shape

n

2n

2n

n

n
n

can be tiled

with -triominoes.”

2the parity of a number is whether it is odd or even.
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• P (n) = “The number of ways to divide n distinct objects into k nonempty
piles is

1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

For a given n, we can use our previously-established methods to prove the truth
or falsity of the statement: but what if we wanted to prove such a statement for
every natural number? How would we do that?

Well: let’s explore an example, to get the flavor of how we might try doing this.

Lemma 4.1.

n−1∑
k=0

xk =
xn − 1

x− 1
,

for any real number x 6= 1 and n ∈ N.

Proof. So: for n = 1, this is pretty straightforward, right? In this case, we specifi-
cally have that our sum is

1−1∑
k=0

xk = x0 = 1 =
x− 1

x− 1
.

Nothing fancy; just some algebraic manipulations.
What about for n = 2? Well, in this case, we have that our sum is

2−1∑
k=0

xk = x0 + x1.

From our earlier work with n = 1, we know that x0 = x−1
x−1 . So, if we plug that in

and do some basic algebra, we have that

x0 + x1 =

(
x− 1

x− 1

)
+ x

=

(
x− 1

x− 1

)
+ x ·

(
x− 1

x− 1

)
=

x2 + x− x + 1

x− 1

=
x2 + 1

x− 1
,

and thus that our claim holds for n = 2 as well.
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What about n = 3? Well, by this point we’re beginning to see the pattern: if we
use our results from the n = 2 case and the same algebraic tricks, we can see that

3−1∑
k=0

xk = x0 + x1 + x2

=

(
x2 − 1

x− 1

)
+ x2

=

(
x2 − 1

x− 1

)
+ x2 ·

(
x− 1

x− 1

)
=

x3 + x2 − x2 + 1

x− 1

=
x3 + 1

x− 1
.

So, for n = 4, we can just repeat, right? And so on and so on, for every n? �

Proofs by induction are, at their heart, a way of formalizing the “just repeat”
statement above. Their formal structure goes as follows:

Lemma 4.2. P (n) holds, for all n ≥ k.

Proof. We proceed by induction.
Base case: we prove (by hand) that p(k) holds. In some situations, we may

also prove that p(k + 1), p(k + 2), and a few more cases hold, if it turns out to be
necessary; but typically we will only need to prove the one case.

Inductive step: Assuming that p(m) holds for all k ≤ m < n, we prove that p(n)
holds.

Conclusion: P (n) holds for all n ≥ k. �

The best analogy for what we’re doing here is perhaps to dominoes: consider
each of your P (n) propositions as individual dominoes – one labeled P (1), one
labeled P (2), one labeled P (3), and so on/so forth. With our inductive step, we
are insuring that all of our dominoes are lined up – in other words, that if one of
them is true, that it will “knock over” all of the ones after it into being true as well!
Then, we can think of the base step as pushing over the first domino; once we do
that, the inductive step makes it so that the truth of our initial proposition forces
all of the ones after it into being true as well!

If domino analogies aren’t your thing, consider instead the following proof:

Lemma 4.3. For any n ∈ N, take a 2n × 2n grid of unit squares, and remove

one square from somewhere in your grid. The resulting shape can be tiled by -
triominoes.

Proof. As suggested by the section title, we proceed by induction.
Base case: for n = 1, we simply have a 2× 2 grid with one square punched out.

As this *is* one of our triominoes, we are trivially done here.
Inductive step: Assume that we can do this for a 2k × 2k-grid without a square,

for any k ≤ n. We then want to prove that we can do this for a 2n+1 × 2n+1 grid
minus a square.
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So: take any such grid, and divide it along the dashed indicated lines into four
2n × 2n grids. By rotating our grid, make it so that the one missing square is in
the upper-right hand corner, as shown below:

Take this grid, and carefully place down one triomino as depicted in the picture
below:

Now, look at each of the four 2n × 2n squares in the above picture. They all
are missing exactly one square: the upper-right hand one because of our original
setup, and the other three because of our placed triomino. Thus, by our inductive
hypothesis, we know that all of these squares can also be tiled! Doing so then gives
us a tiling of the whole shape; so we’ve created a tiling of the 2n+1 × 2n+1 grid!

As this completes our inductive step, we are thus done with our proof by induc-
tion. �

The above question – one where you are in some sense “growing” or “extend-
ing” a result on smaller values of n to get to larger values of n – is precisely the
kind of question that induction is set up to solve. The following problem about
the Fibonacci numbers, while more in the vein of number theory, is another such
“extending” problem:

Definition 4.4. The n-th Fibonacci number is defined recursively as follows:

• f0 = 0.
• f1 = 1.
• fn = fn−2 + fn−1.
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Example 4.5. Here is the start of the Fibonacci number sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Lemma 4.6. The n-th Fibonacci number is even iff n is a multiple of 3.

Proof. We proceed by induction.
Base case: This is trivially true for f0 = 0, f1 = 1, and f2 = 1.
Inductive step: Suppose that for every 0 ≤ k < 3n, that the n-th Fibonacci

number is even iff it is a multiple of 3. We seek to show that this is true for all
0 ≤ k < 3(n + 1).

But proving this is just a simple parity calculation: by our inductive hypothesis,
we know that

f3n = f3n−1 + f3n−2 = odd + odd = even,

f3n+1 = f3n + f3n−1 = even + odd = odd,

f3n+2 = f3n+1 + f3n = odd + even = odd,

and thus that our property holds for all values ≤ 3(k + 1).
Thus, by induction, we know that fn is even iff it is a multiple of 3. �


	1. Random Question
	2. Administrivia and Announcements
	3. Proofs by Contradiction, Part II
	4. Proofs by Induction

