
MATH 8, SECTION 1, WEEK 9 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Monday, Nov. 22nd’s lecture, where we

started our discussion of Taylor series.

1. Random Question

Question 1.1. A sequence of symbols is repetition-free if it never contains the
same segment twice: i.e. it never has any “22”’s, nor any “2121”’s, nor any
“213213”’s in it anywhere.

Is there an infinite, repetition-free sequence that uses only the three symbols
(1,2,3)?

2. Polar Coördinates and the Complex Plane

In class today, we introduced the complex plane C = {x + iy : x, y ∈ R}, and
asked the following question: how can we define functions on C?

Specifically: in R, the functions ex, sin(x), cos(x) were remarkably useful to have
around. Is there any way to extend the definitions of these functions to the complex
plane?

At a first glance, it may not seem like there is a good way to do this: after all, we
defined sin(x) in a strictly geometric fashion using triangles, and defined ex as the
inverse of ln(x), which was the integral of 1/t from 1 to x. Extending these kinds
of definitions to C seems impossible: what would we mean by taking an integral
from 1 to 2 + 3i, or a triangle with side length i?

So: if we want to define these functions for C, we need to come up with another
way of defining them. How can we do that?

The answer, as it turns out, is Taylor series! Specifically: last week, we showed
that
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for all real x. Consequently, we can choose to define

sin(z) = z − z3
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for all z ∈ C.
This definition has some remarkably beautiful consequences. For example, if we

plug in iz into the power series for ez, we have that
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= cos(z) + i sin(z);

in other words, that eiz = cos(z) + i sin(z). If we let z = π, this gives us Euler’s
formula:

eiπ + 1 = 0.

More generally, these definitions give us an incredibly beautiful way to visualize
the complex plane with polar coördinates! Specifically, examine the complex point
r · eiθ. By our formula above, we can write this point as r cos(θ) + i · r sin(θ), which
is the following point in the complex plane:
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In other words: if a point in C has polar coördinates (r, θ), then it *is* the point
reiθ! The upshot of this is that points in the complex plane have remarkably simple
polar coördinates: often, when working in C, it can be a lot easier to manipulate
points by thinking of them as of the form reiθ rather than of the form a+ bi.
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The following section on “roots of unity” is an excellent example of such a situ-
ation, where an otherwise intractable problem on C is made trivial through the use
of polar coördinates:

3. Roots of Unity

Over the real numbers, the equation

xn − 1 = 0

had only the root 1, if n was odd, and {1,−1} if n was even.
In the complex plane, however, the situation is much more complicated; in spe-

cific, by the fundamental theorem of algebra, we know that the equation

zn − 1 = 0

must have n solutions.
What are they? Well: if we express z in polar coördinates as reiθ, we can see

two quick things:

• r = 1. This is because |rn · einθ| is just rn, and the only positive number r
such that rn = 1 is 1.
• θ = k 2π

n , for some k. To see this: simply use Euler’s formula to write

einθ = cos(nθ) + i sin(nθ). If this expression is equal to 1, we need to have
cos(nθ) = 1 and i sin(nθ) = 0 (so that the imaginary and real parts line
up!) – in other words, we need nθ to be a multiple of 2π.

Combining these two results then tells us that the n distinct roots of zn − 1 = 0
are

e0, e
2π
n , e2

2π
n , e3

2π
n . . . , e(n−1) 2π

n .

So: in some explicit cases, what are these roots?

Example 3.1. The second roots of unity are, by the above, e0 = 1 and e
2π
2 =

eπ = cos(π) + i sin(π) = −1, and can be graphed on the unit circle |z| = 1 as shown
below:
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Example 3.2. The third roots of unity are simply (by the above) the points

e0, e
2π
3 ,, and e

4π
3 ; their graph is the three-equally-spaced points on the unit circle

shown below.

Example 3.3. The sixth roots of unity are the points e0, e
2π
6 , e

4π
6 , e

6π
6 , e

8π
6 and

e
10π
6 , and form the hexagon inscribed in the unit circle displayed below:

In the above pictures, these n-th roots of unity always correspond to the vertices
of a regular n-gon inscribed in the unit circle. As it turns out, this is always true:
a quick proof of this statement is just noticing that

(1) we get all of our n-th roots of unity by starting at 1 and rotating by 2π
n

around the unit circle, and
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(2) doing this process creates n evenly-spaced points on the unit circle – i.e.
the vertices of a n-gon.

The basic idea used above has a quick and remarkable consequence:

Theorem 3.4. The sum of all of the n-th roots of unity is 0, for any n ≥ 2.

Proof. We start by stating something that –algebraically – is painfully trivial, but
visually is much less so:

Proposition 3.5. The sum of any two points (a, b) and (c, d) in the plane is just
(a+ c, b+ d). In other words: if u and v are a pair of vectors based at the origin,
then we can get the vector u+ v by placing the start of u at the tip of v, as shown
below:

u
u+v

v

Given this idea, we can visualize adding up the roots of unity in the following
way: simply start with the vector made by the point e0 and the origin, and add
in sequence the vectors formed by the points ek

2π
n . As we discussed above, and is

visually apparent in the picture below, these are all vectors of length 1 at angles
2πk/n; so, adding them up visually creates a n-gon. But what does this mean
about their sum? Well, that if we add all of these vectors together, we return to
where we started. But the only number that has this property is 0 – so their sum
is 0, as claimed.

becomes, after 
  rearranging

e0

2π/8e+e0

2π/8e+e0 4π/8e+

...

0
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The above is a rather unexpected property, and raises perhaps a parallel question:
if their sum has such an odd property, what happens to their product? We answer
this question with the following theorem:

Theorem 3.6. The product of all of the n-th roots of unity is (−1)n+1, for any n.

Proof. So: first, begin by writing all of the n-th roots of unity in the form
(
e

2π
n

)k
,

where k can range from 1 to n. Then, we have that the product of all of the n-th
roots of unity is just

n−1∏
k=0

(
e

2π
n

)k
= exp

(
2π

n
·
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k=1

k

)

= exp

(
2π

n
· n(n+ 1)

2

)
= e(n+1)π

= (−1)n+1,

where the above steps were done by using the rules of multiplication and exponen-
tiation, and Euler’s summation formula. (for those of you who’ve forgotten: exp(x)
is just the function ex, and is used whenever actually writing a bunch of things in
the exponent would render the mathematics unreadable.) �
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