
MATH 8, SECTION 1, WEEK 8 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Friday, Dec. 3rd’s lecture. In this talk,

we discuss partial fractions and complex power series.

1. Random Question

Question 1.1. Oh noes! You’ve just knocked over your drink and stained the
tablecloth. Through careful measurements, you realize that the stain has diameter
1. Can you cover it with your salad plate (which has radius 1/

√
3?)

(Bonus question: suppose you’re quite clumsy and knock over another drink dur-

ing dessert, when the only plates on hand have radius < 1/
√

3. Are you doomed?)

2. Administrivia

• Final-review-thing: will happen Monday, from 2-3pm!
• Math 8 notes and the final: Just like with the midterm, the online Math

8 notes are fair game to be consulted for the final, but cannot be cited as
a direct source. So you’re allowed to use them, but you can’t say “By the
online notes for Math 8 on 11/29/10, we know that (thing) holds.”

So: today’s lecture is in two parts, as it’s covering material from Wednesday
(when I had the plague and had to cancel class) and today’s lectures. The two
topics we’ll discuss here are (1) the use of partial fractions in calculus, and (2)
complex power series and their radii of convergence.

3. Partial Fractions

The method of partial fractions is an algebraic trick designed to find the integrals
of things like ∫

p(x)

q(x)
dx,

where p(x) and q(x) are polynomials, q(x) 6= 0. Specifically: to calculate the
indefinite integral above, the method proceeds as follows:

(1) By using polynomial long division, transform p(x)
q(x) into p1(x) + p2(x)

q(x) , where

the degree of p2(x) is strictly smaller than that of q(x).
(2) Factor q(x) into irreducible polynomials

q(x) = ((r1(x))s1 · . . . · (rm(x))sm) · ((t1(x))u1 · . . . · (tn(x))un) ,

where the ri(x)’s are irreducible polynomials of degree 1 (i.e. your x − 2
terms) and the tk(x)’s are irreducible polynomials of degree 2 (i.e. your
x2 + x+ 1 terms.)
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(3) Find constants Ai,j , Bk,l, Ck,l that solve the given equation:

p2(x)

q(x)
=

m∑
i=1

si∑
j=1

Ai,j

(ri(x))j
+

n∑
k=1

uk∑
l=1

Bk,lx+ Ck,l

(tk(x))l
.

Equivalently, if you multiply through by q(x), you’re trying to find constants
that solve the equation

p2(x) =

m∑
i=1

si∑
j=1

Ai,j
q(x)

(ri(x))j
+

n∑
k=1

uk∑
l=1

(Bk,lx+ Ck,l)
q(x)

(tk(x))l
,

where all of the fractions on the inside become polynomials after dividing
through (because the ri(x)’s and tk(x)’s are factors of q(x)!)

(4) To do this last step, simply group the terms on the right by their factors
of x, so that you have (say) A1,1 + B2,3 copies of x2 and 4C2,1 copies of
x. Then, setting this equal to the left-hand side gives you deg(p2(x))-many
linear equations to solve – one for every power of x, up to deg(p2(x)).

(5) Solving these equations tells us that∫
p(x)

q(x)
dx =

∫ p1(x) +

m∑
i=1

si∑
j=1

Ai,j

(ri(x))j
+

n∑
k=1

uk∑
l=1

Bk,lx+ Ck,l

(tk(x))l

 dx

By using u-substitutions, the power rule, and trig substitutions, the above
is (usually) easy to integrate. Do so and you’re done!

Like many subjects in calculus, this is a topic that’s probably made a lot clearer
through examples:

Question 3.1. Calculate ∫
x4 + 1

x(x2 + 1)2
dx.

Proof. We proceed by the method of partial fractions. Because the degree of the
denominator is greater than that of the numerator, we don’t need to perform poly-
nomial long division to simplify the numerator. Similarly, the denominator is al-
ready factored: so we can skip to step 3, where we’re trying to solve for variables
A,B,C,D,E such that

x4 + 1

x(x2 + 1)2
=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
;

i.e., if we multiply through by x(x2 + 1)2,

x4 + 1 = A(x2 + 1)2 + (Bx+ C) · (x(x2 + 1)) + (Dx+ E) · x.

If we expand the right-hand side and group together terms by their powers of x,
we have that the above equation is in fact

x4 + 1 = A(x4 + 2x2 + 1) +B(x4 + x2) + C(x3 + x) +Dx2 + Ex

= (A+B)x4 + Cx3 + (2A+B +D)x2 + (C + E)x+A.
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The above is equivalent to the following five equations:

1x4 = Ax4 +Bx4

0x3 = Cx3

0x2 = 2Ax2 +Bx2 +Dx2

0x = Cx+ Ex

1 = A

Solving these equations gives us that A = 1, B = 0, C = 0, D = −2, E = 0 and thus
that ∫

x4 + 1

x(x2 + 1)2
dx =

∫
1

x
− 2x

(x2 + 1)2
dx.

Finally, if we use the u-substitution u = x2 + 1 in the second integral, we get that∫
x4 + 1

x(x2 + 1)2
d = ln |x|+ 1

x2 + 1
+ C.

So we’re done! �

To further illustrate this method, we study another example:

Question 3.2. Calculate ∫
x4 + x3 + 4x2

x3 − 1
dx.

Proof. We proceed via partial fractions. First, we use polynomial long division to
divide the numerator by the denominator:

x+ 1

x3 − 1
)

x4 + x3 + 4x2

− x4 + x

x3 + 4x2 + x
− x3 + 1

4x2 + x+ 1

Consequently, we have that∫
x4 + x3 + 4x2

x3 − 1
dx =

∫ (
x+ 1 +

4x2 + x+ 1

x3 − 1

)
dx,

and that it suffices to turn our attention to the fraction 4x2+x+1
x3−1 .

If we proceed by the method of partial fractions, we first factor x3 − 1 as (x −
1)(x2 + x+ 1), and seek to find constants A,B,C such that

4x2 + x+ 1

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1
;
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i.e. A,B,C such that

4x2 + x+ 1 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

= (A+B)x2 + (A−B + C)x+ (A− C).

Setting A = 2, B = 2, C = 1 solves the above equation, and allows us to write∫
x4 + x3 + 4x2

x3 − 1
dx =

∫ (
x+ 1 +

2

x− 1
+

2x+ 1

x2 + x+ 1

)
dx,

This can be integrated by splitting the integral up into parts, and using the two
(distinct) u-substitutions u = x− 1 and u = x2 +x+ 1 on the two fractions. Doing
so gives us our answer:∫

x4 + x3 + 4x2

x3 − 1
dx =

x2

2
+ x+ 2 ln(|x− 1|) + ln(|x2 + x+ 1|) + C

=
x2

2
+ x+ ln(|x− 1|2) + ln(|x2 + x+ 1|) + C

=
x2

2
+ x+ ln

(
|x− 1|2 · |x2 + x+ 1|

)
+ C

=
x2

2
+ x+ ln

(
|x4 − x3 − x+ 1|

)
+ C.

�

4. Complex Power Series

On Wednesday (while I was sick,) the Math 1 lecture discussed the concepts
of series and sequences of complex numbers, and how convergence works in these
situations. Today, I’d like to discuss a particular special case of series of complex
numbers: that of complex power series, i.e. things of the form

∞∑
n=0

αnz
n,

where the αn’s are all complex numbers.
Specifically, the question we’re interested in is is the following: given some com-

plex power series
∑∞

n=0 αnz
n, for what values of z ∈ C does this series converge?

For real numbers, we had the remarkably useful concept of a radius of conver-
gence: for any given power series

∑∞
n=0 anx

n of real numbers, we knew that there
was some value R such that this series would converge for any |x| < R and diverge
for any |x| > R.

Could such a thing exist for the complex numbers? As it turns out: yes! We in
fact have the following theorem:

Theorem 4.1. For any complex power series
∞∑

n=0

αnz
n,

there is some constant R ∈ [0,∞] such that this power series converges for any
z ∈ C with |z| < R, and diverges at any value of z with |z| > R.
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Proof. (We omitted this proof from lecture due to time constraints; it’s reproduced
here in all of its glory.)

Take any complex-valued power series
∞∑

n=0

αnz
n,

and suppose that it converges at some point z0 6= 0 ∈ C. (If no such point exists,
then its radius of convergence is simply 0.)

We then claim that for any z ∈ C with |z| < |z0|, our complex power series
converges at z. To see this: notice that because the series

∞∑
n=0

αnz
n

0

converges, the individual terms of this sum (the αnx
n
0 ’s) must converge to 0. Con-

sequently, we know that these terms must be bounded: i.e. that there is some value
of M such that

|αnz
n

0 | ≤M,

for any n.
Given this observation, we then have that for any z with |z| < |z0|,

|αnz
n| =

∣∣∣∣αnz
n

0 ·
(
z

z0

)n∣∣∣∣
= |αnz

n
0 | ·

∣∣∣∣ zz0
∣∣∣∣n

≤M ·
∣∣∣∣ zz0
∣∣∣∣n .

But this quantity |αnz
n| is greater than both the real and imaginary parts of

αnz
n! Consequently, if we use the first comparison test and show that the series

∞∑
n=0

M ·
∣∣∣∣ zz0
∣∣∣∣n

converges, we’re done! (as this means that both the real and imaginary parts of

our series converge.) But this is trivial: because |z| < |z0|, we know that
∣∣∣ zz0 ∣∣∣ is less

than 1: therefore, the above series is simply a geometric series and must converge.
We’ve thus proven that if our power series converges at any value z0, it must

converge at any value z with |z| < |z0|.
Let T be the collection of points in C for which our power series converges.

Examine the absolute value of all of the points in T . There are two possibilities:

• The absolute value of elements in T is unbounded: i.e. there are arbitrarily
large complex numbers for which our power series converges. Then, by our
earlier work, we know that this power series must converge on all of C, as
if our power series converges at any z0, it must converge at any value z
with |z| < |z0|. In other words, our power series has ∞ as its radius of
convergence.
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• There is a supremal value R for the set {|z| : z ∈ T}. In this case, we know
(by the result proven earlier) that our power series must converge for any z
with |z| < R. Furthermore, we know that for any z with |z| > R, z cannot
be in the set T , because R was a supremum: so for any z with |z| > R, we
must have that our power series diverges. In other words: our power series
has R as its radius of convergence.

But this is exactly what we wanted to prove! So we’re done: we’ve shown that
complex power series have radii of convergence, just as we claimed. �

The cool thing about this theorem is it tells us the following: to understand the
radius of convergence of a complex power series, if all of its coefficients are real, it
suffices to simply know the radius of convergence of the corresponding real power
series! In other words, suppose we have a complex power series

∞∑
n=0

αnz
n,

where all of the αn’s are real numbers. Suppose furthermore that the radius of
convergence of the real-valued power series with the same coefficients,

∞∑
n=0

αnx
n,

was R. Then, look at the complex power series again; by our theorem above, we
know that not only must it have a radius of convergence, it must also be R – the
same as in the real case! This is because if our complex power series converges at
some real point x > 0, we’ve proven that it has to converge at every single complex
point z with |z| < x; consequently, the radius of convergence in the real case must
be the same as that for the complex case!

We state this in a theorem for added emphasis:

Theorem 4.2. If

∞∑
n=0

αnz
n

is a complex power series where all of the αn’s are real-valued, then the radius of
convergence of

∑∞
n=0 αnz

n is the same as that of the real power series

∞∑
n=0

αnx
n.

This is remarkably useful, as we can use tools like the ratio test and comparison
test to work with real power series (in the complex case, we don’t have a lot of
those theorems!) To illustrate this, we work one quick example:

Question 4.3. What is the radius of convergence of the complex power series

∞∑
n=0

5nzn!?
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Proof. By our above discussion, it suffices to simply find the radius of convergence
of the real power series

∞∑
n=0

5nxn!.

To do this, pick any positive value of x and apply the ratio test:

lim
n→∞

5n+1x(n+1)!

5nxn!
= lim

n→∞
5 · x(n+1)!−n! = lim

n→∞
5 · xn·n! =

 0, x < 1,
5, x = 1,
∞, x > 1.

Consequently, this real-valued power series has 1 as its radius of convergence; by
our earlier discussion, this must be the radius of convergence of the complex power
series as well. �

It bears noting that – just as in the real case! – knowing a complex power series’s
radius of convergence doesn’t tell you anything about what happens for values of
z with magnitude equal to that radius. For example, the three power series

∞∑
n=0

zn,

∞∑
n=0

zn

n2
,

∞∑
n=0

zn

n

all have 1 as their radius of convergence. Yet, the first power series diverges at any
z with |z| = 1, the second converges on any z with |z| = 1, and the third converges
for some values with absolute value 1 and diverges at others (specifically, it diverges
at z = 1 and converges everywhere else.)
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