
MATH 8, SECTION 1 - MIDTERM REVIEW NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Friday, Oct. 25th’s midterm review.

The following is kind of a condensed, “Cliffs-Notes”-style review of the course
thus far; here, we list all of the major theorems and results we’ve covered thus far,
and talk a little bit about when we would use these theorems. Basically, this is the
last four and a half weeks in one handout; if you want to see *examples* of how
these things are actually used, consult the online notes for those particular weeks!

1. Proof Methods

(Relevant lectures: Monday, wk. 1, Wednesday, wk. 1, Friday, wk. 1.)

Basically, you are all – as a class –quite capable with proof methods; so there’s not a
lot to say here. However, it is worth it to mention the structure of an inductive proof
again, as it’s been a while since we’ve used induction (as opposed to direct proofs
or proofs by contradiction!), and a lot of people get tripped up on the structure of
these things:

1.1. Proofs by Induction. Suppose that you have a claim P (n) – a sentence like
“2n ≥ n”, for example. How do we prove that this kind of thing holds by induction?
Well: we generally follow the outline below:

Lemma 1.1. P (n) holds, for all n ≥ k.
Proof.

Base case: we prove (by hand) that P (k) holds, for a few base cases.
Inductive step: Assuming that P (m) holds for all k ≤ m < n, prove that P (n)

holds.
Conclusion: P (n) holds for all n ≥ k. �

2. Sequences

(Relevant lectures: Friday, wk. 2, Monday, wk. 3, )

2.1. Definitions. A sequence is just an infinite collection of objects {an}∞n=1

indexed by the natural numbers. The main property that we’ve studied about
sequences in this class is that of convergence:

Definition 2.1. A sequence {an}∞n=1 converges to some value λ if, for any distance
ε, the an’s are eventually within ε of λ. To put it more formally, limn→∞ an = λ
iff for any distance ε, there is some cutoff point N such that for any n greater than
this cutoff point, an must be within ε of our limit λ.

In symbols:

lim
n→∞

an = λ iff (∀ε)(∃N)(∀n > N) |an − λ| < ε.

1
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2.2. Tools. We have the following tools for manipulating and studying sequences:

(1) Arithmetic and Sequences:
• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then

limn→∞ an + bn = (limn→∞ an) + (limn→∞ bn).
• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then

limn→∞ anbn = (limn→∞ an) · (limn→∞ bn).
• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6=

0 for all n, then limn→∞
an

bn
= (limn→∞ an)/(limn→∞ bn).

When using these properties, please remember to show that both of the
limits limn→∞ an, limn→∞ bn exist before splitting them apart! TAs will
dock you mad points for failing to do this, as it is one of the most common
ways for people to make errors in limit calculations.

(2) Monotone and Bounded Sequences: if the sequence {an}∞n=1 is bounded
above and nondecreasing, then it converges; similarly, if it is bounded above
and nonincreasing, it also converges. This is a useful trick if you’ve ran into
a sequence that you have no idea where it converges to, but just need to
show that it goes *somewhere*.

(3) Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist
and are equal to some value l, and the sequence {cn}∞n=1 is such that an ≤
cn ≤ bn, for all n, then the limit limn→∞ cn exists and is also equal to
l. Basically, whenever you’re studying a sequence whose terms are really
complex and messed-up, use the squeeze theorem to bound it above and
below by something simple you understand – i.e. if you were looking at
an = n−2 sin(n), you could bound this above and below by ±n−2.

(4) Cauchy sequences A sequence is Cauchy1 iff it converges. For the most
part, this doesn’t come up in calculations; it’s more of a tool for proving
other theorems (at least, this is the case for as much calculus as we’ve
covered.)

2.3. Applications. Pretty much everything else we’ve looked at in this class can
be thought of as an “application” of sequences: the largest/most obvious example
of this, however, is series, the subject of the next section:

3. Series

(Relevant lectures: Monday, wk. 3, Wednesday, wk. 3, Friday, wk. 3.)

3.1. Definitions. We defined three main concepts in our work with series, which
we repeat here:

Definition 3.1. A sequence is called summable if the sequence {sn}∞n=1 of partial
sums

sn := a1 + . . . an

1We say that a sequence is Cauchy if and only if for every ε > 0 there is a natural number N
such that for every m,n ≥ N

|am − an| < ε.

You can think of this condition as saying that Cauchy sequences “settle down” in the limit –
i.e. that if you look at points far along enough on a Cauchy sequence, they all get fairly close to

each other.
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converges. If it does, we then call the limit of this sequence the sum of the an, and
denote this quantity by writing

∞∑
n=1

an.

We call such infinite sums series.

Definition 3.2. A series
∑∞

n=1 an converges absolutely iff the series
∑∞

n=1 |an|
converges; it converges conditionally iff the series

∑∞
n=1 an converges but the

series of absolute values
∑∞

n=1 |an| diverges.

Definition 3.3. For a series of the form2
∑∞

n=0 anx
n, we say that the radius of

convergence of this series is some value R ∈ R such that

• if x is a real number such that |x| < R,
∑∞

n=0 anx
n converges, and

• if x is a real number such that |x| > R,
∑∞

n=0 anx
n diverges.

3.2. Tools. Direct calculations of series are often rather difficult; consequently, we
have developed the following tools for manipulating them:

(1) Comparison Test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences such that
0 ≤ an ≤ bn, then the following statement is true:( ∞∑

n=1

bn converges

)
⇒

( ∞∑
n=1

an converges

)
.

When to use this test: when you’re looking at something fairly complicated
that either (1) you can bound above by something simple that converges,
like

∑
1/n2, or (2) that you can bound below by something simple that

diverges, like
∑

1/n.
(2) Limit Comparison Test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences of

positive numbers such that

lim
n→∞

an
bn

= c 6= 0,

then the following statement is true:( ∞∑
n=1

bn converges

)
⇔

( ∞∑
n=1

an converges

)
.

When to use this test: typically, when you see something like a quotient of
really complicated polynomials. It works a lot like the normal comparison
test, and merits consideration in many of the same situations.

(3) Alternating Series Test: If {an}∞n=1 is a sequence of numbers such that
• limn→∞ an = 0 monotonically, and
• the an’s alternate in sign, then

the series
∑∞

n=1 an converges.
When to use this test: when you have an alternating series.

(4) Ratio Test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

an+1

an
= r,

then we have the following three possibilities:

2Such series are called power series, because they are a series made out of increasing powers
of xn.
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• If r < 1, then the series
∑∞

n=1 an converges.
• If r > 1, then the series

∑∞
n=1 an diverges.

• If r = 1, then we have no idea; it could either converge or diverge.
When to use this test: when you have something that is growing kind of
like a geometric series: so when you have terms like 2n or n!.

(5) Root Test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

n
√
an = r,

then we have the following three possibilities:
• If r < 1, then the series

∑∞
n=1 an converges.

• If r > 1, then the series
∑∞

n=1 an diverges.
• If r = 1, then we have no idea; it could either converge or diverge.

When to use this test: mostly, in similar situations to the ratio test. Ba-
sically, if the ratio test fails, there’s a small chance that this will work
instead.

(6) Absolute Convergence and Convergence: If {an}∞n=1 is a sequence of
positive numbers such that

∞∑
n=1

|an|

converges, then so does

∞∑
n=1

an.

When to use this test: whenever you have a series of terms that are not all of
the same sign, and yet aren’t strictly alternating. This is pretty much your
only tool to deal with mixed-sign series that aren’t solved by the alternating
series test: so, if you have to deal with anything like cos(n)/2n, reach for
this theorem first.

(7) Vanishing criterion: If limn→∞ an 6= 0, then the series

∞∑
n=1

an

diverges. When to use this theorem: basically, whenever you’re looking at
a series made out of things that don’t converge to 0, like (−1)n.

3.3. Applications. The main applications of series are integrals, which we haven’t
discussed yet; so, for the most part, our study of series has been focused on just
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calculations and manipulations of specific series (rather than any specific applica-
tions.) It is worth recalling the following facts, however:

∞∑
n=1

1

n
diverges,

∞∑
n=1

(−1)n

n
converges,

∞∑
n=1

1

n2
=
π2

6
and thus converges; finally,

∞∑
n=1

1

xn
converges iff x < 1, in which case it is equal to

x

1− x
.

4. Limits and Continuity

(Relevant lectures: Monday, wk. 4, Wednesday, wk. 4, Friday, wk. 4.)

4.1. Definitions. In the fourth week of our course, we turned to the study of limits
of functions; here, we encountered our first ε − δ proofs, and began to work with
the notion of continuity. We review several key definitions here:

Definition 4.1. If f : X → Y is a function between two subsets X,Y of R, we say
that

lim
x→a

f(x) = L

if and only if

(1) (vague:) as x approaches a, f(x) approaches L.
(2) (precise; wordy:) for any distance ε > 0, there is some neighborhood δ > 0

of a such that whenever x ∈ X is within δ of a, f(x) is within ε of L.
(3) (precise; symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ)⇒ (|f(x)− L| < ε).

Definition 4.2. A function f : X → Y is said to be continuous at some point
a ∈ X iff

lim
x→a

f(x) = f(a).

Definition 4.3. For a function f : X → Y , we say that

lim
x→a+

f(x) = L

if and only if

(1) (vague:) as x goes to a from the right-hand-side, f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x > a)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→a−

f(x) = L

if and only if

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk4_monday_notes_2010.pdf
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(1) (vague:) as x goes to a from the left-hand-side, f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ and x < a)⇒ (|f(x)− L| < ε).

Definition 4.4. For a function f : X → Y , we say that

lim
x→+∞

f(x) = L

if and only if

(1) (vague:) as x goes to “infinity,” f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃N s.t. ∀x ∈ X, (x > N)⇒ (|f(x)− L| < ε).

Similarly, we say that

lim
x→−∞

f(x) = L

if and only if

(1) (vague:) as x goes to “negative infinity,” f(x) goes to L.
(2) (concrete, symbols:)

∀ε > 0,∃N s.t. ∀x ∈ X, (x < N)⇒ (|f(x)− L| < ε).

4.2. Tools. As before, we developed several useful tools and blueprints for dealing
with limits, which we review here:

(1) A blueprint for ε − δ proofs of limits: In class, we developed the
following “blueprint” that describes a general method for proving that
limx→a f(x) = L via an ε− δ argument. We review this below:
(a) First, examine the quantity

|f(x)− L|.
Specifically, try to find a simple upper bound for this quantity that
depends only on |x− a|, and goes to 0 as x goes to a – something like
|x− a| · (constants), or |x− a|3 · (bounded functions, like sin(x)).

(b) Using this simple upper bound, for any ε > 0, choose a value of δ such
that whenever |x−a| < δ, your simple upper bound |x−a| ·(constants)
is < ε. Often, you’ll define δ to be ε/(constants), or somesuch thing.

(c) Plug in the definition of the limit: for any ε > 0, we’ve found a δ such
that whenever |x− a| < δ, we have

|f(x)− L| < (simple upper bound depending on |x− a|) < ε.

Thus, we’ve proven that limx→a f(x) = L, as claimed.
(2) A blueprint for proving that certain limits do not exist: In class,

we proved the following lemma:

Lemma 4.5. For any function f : X → Y , we know that limx→a f(x) 6= L
iff there is some sequence {an}∞n=1 with the following properties:
• limn→∞ an = L, and
• limn→∞ f(an) 6= L, and

This lemma makes proving that a function f is discontinuous at some
point a remarkably easy:
• to prove that limx→a f(x) 6= L,
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• all we have to do is just find *one* sequence {an}∞n=1 that converges to
a, such that limn→∞ f(an) 6= L on that sequence! Basically, it allows
us to work in the world of sequences instead of that of continuity,
which can make life a lot easier on us.

(3) Squeeze theorem: If f, g, h are functions defined on some interval I \{a}3
such that

f(x) ≤ g(x) ≤ h(x),∀x ∈ I \ {a}, and

lim
x→a

f(x) = lim
x→a

h(x),

then limx→a g(x) exists, and is equal to the other two limits limx→a f(x), limx→a h(x).
Basically, use this theorem like the squeeze theorem for sequences: when-
ever you see something rather complicated and want to take its limit, try to
simply bound it above and below by simple things that you can calculate!
This is really useful at studying functions that have trigonometric functions
as factors (like x2 sin(1/x), for example.)

(4) Limits and arithmetic: If f, g are a pair of functions such that limx→a f(x),
limx→a g(x) both exist, then we have the following equalities:

lim
x→a

(αf(x) + βg(x)) = α
(

lim
x→a

f(x)
)

+ β
(

lim
x→a

g(x)
)

lim
x→a

(f(x) · g(x)) =
(

lim
x→a

f(x)
)
·
(

lim
x→a

g(x)
)

lim
x→a

(
f(x)

g(x)

)
=
(

lim
x→a

f(x)
)
/
(

lim
x→a

g(x)
)
, if lim

x→a
g(x) 6= 0.

(5) Limits and composition: If f : Y → Z is a function such that limy→a f(x) =
L, and g : X → Y is a function such that limx→b g(x) = a, then

lim
x→b

f(g(x)) = L.

Specifically, if both functions are continuous, their composition is continu-
ous.

Basically, between these three theorems and the results we know from
class (ex, sin, cos, and the polynomials are continuous), you should be able
to do most of your limit calculations without touching an ε or δ.

4.3. Applications. There are two key applications of continuity which we have
discussed in class: we review them here:

Theorem 4.6. (Intermediate Value Theorem): If f is a continuous function on
[a, b], then f takes on every value between f(a) and f(b) at least once.

Most uses of this theorem occur when we have a continuous function f that takes
on both positive and negative values on some interval; in this case, the intermediate
value theorem tells us that this function must have a zero between each pair of sign
changes. Basically, when you have a question that’s asking you to find zeroes of

3The set X \Y is simply the set formed by taking all of the elements in X that are not elements
in Y . The symbol \, in this context, is called “set-minus”, and denotes the idea of “taking away”

one set from another.
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a function, or to show that a function with prescribed endpoint behavior takes on
some other values, the IVT is the way to go.

Theorem 4.7. (Extremal value theorem:) If f : X → Y is a continuous function,
and X is a closed and bounded subset X of R, then f attains its minima and
maxima. In other words, there are values m,M ∈ X such that for any x ∈ X,
f(m) ≤ f(x) ≤ f(M).

We didn’t really use this theorem too often for direct calculations (as it only tells
you that maxima and minima are attained, but not what they are!) – basically,
its main use was in proving one of the applications of differentiation, in our next
section!

5. Differentiation

(Relevant lectures: Monday, wk. 5, Wednesday, wk. 5.)

For the midterm, you’re liable for the material covered on Monday and Wednesday
this week (week 5) in class: so you should know what a derivative is and how they
relate to finding minima and maxima, but you don’t need to worry about the mean
value theorem.

5.1. Definitions.

Definition 5.1. For a function f defined on some neighborhood (a− δ, a+ δ), we
say that f is differentiable at a iff the limit

lim
h→0

f(a+ h)− f(a)

(a+ h)− a

exists. If it does, denote this limit as f ′(a); we will often call this value the deriv-
ative of f at a.

The derivative has a number of interpretations as physical phenomena; notably,
if f(x) is a function that calculates distance with respect to some time t, you can
think of the derivative f ′(t) as denoting the velocity of f at time t, and f ′′(t) as
denoting the acceleration of f at time t.

5.2. Tools.

(1) Differentiation is linear: For f , g a pair of functions differentiable at a
and α, β a pair of constants,

(αf(x) + βg(x))′
∣∣∣
a

= αf ′(a) + βg′(a).

(2) Product rule: For f , g a pair of functions differentiable at a,

(f(x) · g(x))′
∣∣∣
a

= f ′(a) · g(a) + g′(a) · f(a).

(3) Quotient rule: For f , g a pair of functions differentiable at a, g(a) 6= 0,
we have (

f(x)

g(x)

)′ ∣∣∣∣∣
a

=
f ′(a) · g(a)− g′(a) · f(a)

(g(a))2

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk5_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk5_wednesday_notes_2010.pdf
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(4) Chain rule: For f a function differentiable at g(a) and g a function dif-
ferentiable at a,

(f(g(x)))′
∣∣∣
a

= f ′(g(a)) · g′(a).

5.3. Applications. There’s only one application of derivatives that we’ve really
discussed in-depth thus far in the course, and that is the concept of extrema:

Definition 5.2. For a function f defined on some set X, the critical points of f
on X are all of the points in x where either

• f ′(x) = 0, or
• f ′(x) doesn’t exist.

Definition 5.3. For a function f defined on some interval (a, b), a point x ∈ (a, b)
is called a local maxima iff there is some small neighborhood (x − δ, x + δ) in
which f(x) > f(t),∀t ∈ (x− δ, x+ δ).

Similarly, a point x ∈ (a, b) is called a local minima iff there is some small
neighborhood (x− δ, x+ δ) in which f(x) < f(t),∀t ∈ (x− δ, x+ δ).

Proposition 5.4. If x is a local minima or maxima for some function f , x is a
critical point of f .

Proposition 5.5. If f is a continuous function on some interval [a, b], then f takes
on its minima and maxima over this entire region by the extremal value theorem.
Furthermore, f takes on these minimum and maximum values at either the critical
points of f or at the endpoints {a, b}.

The above two propositions are fantastically useful when it comes to analyzing
a function’s critical points: all we have to do is take the derivative, find all of
the critical points, and look at the function at all of those points along with the
endpoints.
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