# MATH 8, SECTION 1 - FINAL REVIEW NOTES (EXAMPLES) 

TA: PADRAIC BARTLETT


#### Abstract

These are the other half of the notes from Monday, Dec. 6rd's final review; here, we study examples of the major concepts encountered this quarter.


## 1. Problem 1: $\epsilon-\delta$ PRoofs and complex polar coördinates

## Question 1.1.

(1) Prove that $f(x)=x^{3}-1$ is a continuous function on all of $\mathbb{R}$.
(2) What are this function's roots over $\mathbb{C}$ ?
(3) What are this function's global minima and maxima over the interval $[-1,1]$ ?

Proof. (1): To prove this, let's try using the "Blueprint for $\epsilon-\delta$ proofs" in the notes/final review handout. Specifically, let's do the following:
(1) First, let's look at $|f(x)-f(a)|$, and try to create a simple bound depending only on $|x-a|$ and some constants.

$$
|f(x)-f(a)|=\left|x^{3}-1-a^{3}+1\right|=\left|x^{3}-a^{3}\right|=|x-a| \cdot\left|x^{2}+x a+a^{2}\right|
$$

If $x$ is within, say, 1 of $a$, we know that we can bound this quantity $\mid x^{2}+$ $x a+a^{2} \mid$ as follows:

$$
\left|x^{2}+x a+a^{2}\right| \leq\left|(a+1)^{2}+a(a+1)+a^{2}\right| \leq 3(a+1)^{2},
$$

which is a constant! Therefore, whenever $x$ is within 1 of $a$, we have the following simple bound:

$$
|f(x)-f(a)| \leq|x-a| \cdot\left(3(a+1)^{2}\right)
$$

(2) Now that we have this nice constant bound, we want to pick $\delta$ such that whenever $|x-a|<\delta,|f(x)-f(a)|<\epsilon$. To do this, we simply want to pick $\delta$ such that

- $\delta<1$, so that $x$ is always forced to be within 1 of $a$, and we have our nice constant bound, and
- $\delta<\frac{\epsilon}{3(a+1)^{2}}$, because this means that

$$
|f(x)-f(a)| \leq|x-a| \cdot\left(3(a+1)^{2}\right)<\frac{\epsilon}{3(a+1)^{2}} \cdot 3(a+1)^{2}=\epsilon
$$

So: let $\delta<\min \left(1, \frac{\epsilon}{3(a+1)^{2}}\right)$.
Then $\delta$ is smaller than both 1 and $\frac{\epsilon}{3(a+1)^{2}}$, and so both of our above statements hold! In particular, for any epsilon, this choice of $\delta$ forces

$$
\mid f(x)-f(a)<\epsilon,
$$

which is exactly what we want to do in an $\epsilon-\delta$ proof to show continuity.
(2): Finding this function's roots over $\mathbb{C}$ is equivalent to finding all of the values of $z$ such that

$$
1=z^{3}
$$

To do this: first, remember that we can write any nonzero point in $\mathbb{C}$ with polar coördinates $(r, \theta)$ uniquely in the form $r e^{i \theta}$, where $r \in(0, \infty)$ and $\theta \in[0,2 \pi]$. Then, we're just looking for all of the values $r, \theta$ such that

$$
1=r^{3} e^{3 i \theta}
$$

Notice that if the above equation holds, then we have that

$$
1=\left|r^{3} e^{3 i \theta}\right|=\left|r^{3}\right| \cdot\left|e^{3 i \theta}\right|
$$

However, if we use the formula $e^{i x}=\cos (x)+i \sin (x)$ and the definition $|a+b i|=$ $\sqrt{a^{2}+b^{2}}$, we can see that

$$
\begin{aligned}
\left|e^{3 i \theta}\right| & =\mid \cos (3 \theta)+i \sin (3 \theta)) \\
& =\sqrt{\cos ^{2}(3 \theta)+\sin ^{2}(3 \theta)} \\
& =\sqrt{1} \\
& =1
\end{aligned}
$$

Therefore, we in fact have that $r^{3}=1$; i.e. $r=1$ ! All we have to do now is then solve for $\theta$.

We do this in a similar way: if we have $e^{3 i \theta}=1$, by using $e^{i x}=\cos (x)+i \sin (x)$ again, we must have that

$$
\begin{array}{ll} 
& 1=\cos (3 \theta)+i \sin (3 \theta) \\
\Rightarrow \quad & \cos (3 \theta)=1, \text { and } \sin (3 \theta)=0
\end{array}
$$

The three values $\theta=0,2 \pi / 3,4 \pi / 3$ are solutions to the above, and therefore correspond to the three roots $1, e^{2 i \pi / 3}, e^{4 i \pi / 3}$ of $f(z)=z^{3}-1$; by the fundamental theorem of calculus, we know that there are only three roots, and thus that we've found them all.
(3): Finally, we can find the minima and maxima of this (now real-valued, again) function on $[-1,1]$ by simply taking its derivative. As $f^{\prime}(x)=3 x^{2}$ has its only 0 at 0 , we know (by the extremal value theorem) that the only points we have to check for extrema are $x=-1,0$, and 1 . Because $f(-1)=-2, f(0)=-1$, and $f(1)=0$, we know that its global maxima on this interval is 0 and its global minima is -2 .

## Question 2.1.

(1) Find $T_{2 n}\left(e^{x^{2}}, 0\right)$, and the associated Taylor series for $e^{x^{2}}$.
(2) Where does this Taylor series converge? Where does it converge absolutely? Where does it converge uniformly?
(3) Approximate $\int_{-1 / 2}^{1 / 2} e^{x^{2}} d x$ with an error of about $\pm .1$.

Proof. (1): We proceed in a similar fashion to Wednesday, week 9's notes. First, recall that we can always write $e^{t}$, for any value of $t$, as the following power series:

$$
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}
$$

So, in specific, if we let $t=x^{2}$, we have that

$$
e^{x^{2}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

This motivates us to make the following claim:

## Claim 2.2.

$$
T_{2 n}\left(e^{x^{2}}, 0\right)=\sum_{k=0}^{n} \frac{x^{2 k}}{k!}
$$

Proof. By a theorem from class/on page 8 of the final review handout, we know that this is true iff $\sum_{k=0}^{n} \frac{x^{2 k}}{k!}$ and $e^{x^{2}}$ agree up to order $2 n$ at 0 . (This is because the $2 n$-th Taylor polynomial of a function is the unique polynomial of degree $\leq 2 n$ that agrees with its function up to order $2 n$.) Therefore, to prove our claim, it suffices to show that

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\sum_{k=0}^{n} \frac{x^{2 k}}{k!}}{x^{2 n}}=0
$$

To see this: simply make the substitution $y=x^{2}$. Then the left-hand-side above becomes

$$
\lim _{y \rightarrow 0} \frac{e^{y}-\sum_{k=0}^{n} \frac{y^{k}}{k!}}{y^{n}}
$$

which we know is 0 because $T_{n}\left(e^{y}, 0\right)=\frac{y^{k}}{k!}$, and therefore these two functions agree up to order $n$ at 0 . Therefore, we've proven that

$$
T_{2 n}\left(e^{x^{2}}, 0\right)=\sum_{k=0}^{n} \frac{x^{2 k}}{k!}
$$

and furthermore that $e^{x^{2}}$, s Taylor series is precisely

$$
\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

(2): If we apply the ratio test, we can see that for any $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{|x|^{2 n+2} /(n+1)!}{|x|^{2 n}} n!=\lim _{n \rightarrow \infty} \frac{|x|^{2}}{n+1}=0
$$

and therefore for any value of $x$, the series

$$
\sum_{n=0}^{\infty} \frac{|x|^{2 n}}{n!}
$$

converges: i.e. that

$$
\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

converges absolutely. Therefore, because absolute convergence implies convergence, we know that this power series converges on all of $\mathbb{R}$.

Furthermore, we know from a theorem from class / from page 2 of the final review handout that (for a power series $F(x)=\sum a_{n} x^{n}$,) "if our power series converges at some value $x$, then it converges uniformly to $F(x)$ on any interval $[-b, b]$, for any $b<|x|$." Therefore, we have that our Taylor series converges uniformly to $e^{x^{2}}$ on any interval $[-b, b]$, for any $b \in \mathbb{R}^{+}$.
(3): Finally, to approximate $\int_{-1 / 2}^{1 / 2} e^{x^{2}} d x$, we write $e^{x^{2}}$ as the sum of its secondorder Taylor polynomial and second-order error term:

$$
\begin{aligned}
e^{x^{2}} & =T_{2}\left(e^{x^{2}}, 0\right)+R_{2}\left(e^{x^{2}}, 0\right) \\
& =1+x^{2}+R_{2}\left(e^{x^{2}}, 0\right)
\end{aligned}
$$

By Taylor's theorem, we know that for $x$ in the interval $[0,1 / 2]$, we have

$$
\begin{aligned}
R_{2}\left(e^{x^{2}}, 0\right) & =\frac{\left.\frac{\partial^{3}}{\partial x^{3}}\left(e^{x^{2}}\right)\right|_{c}}{3!} x^{3} \\
& =\frac{\left.\frac{\partial^{2}}{\partial x^{2}}\left(2 x e^{x^{2}}\right)\right|_{c}}{3!} x^{3} \\
& =\frac{\left.\frac{\partial}{\partial x}\left(\left(2+4 x^{2}\right) e^{x^{2}}\right)\right|_{c}}{3!} x^{3} \\
& =\frac{\left(\left(12 c+8 c^{3}\right) e^{c^{2}}\right)}{3!} x^{3},
\end{aligned}
$$

for some $c \in(0,1 / 2)$.
So: because $\frac{\partial^{3}}{\partial c^{3}}\left(e^{c^{2}}\right)$ is monotonically increasing, we know that we can find an upper bound on it from by plugging in $c=1 / 2$, and a lower bound by plugging in
$c=0$. Doing this gives us $0 \leq \frac{\partial^{3}}{\partial c^{3}}\left(e^{c^{2}}\right) \leq 14$, by doing a few quick/dirty estimates (i.e. $\sqrt[4]{e}<2$, and evaluating the poly at $1 / 2=7$.)

Applying this to our remainder function tells us that

$$
0 \leq R_{2}\left(e^{x^{2}}, 0\right) \leq \frac{14}{6} x^{3}
$$

for $x \in(0,1 / 2)$. Consequently, because we can write the integral

$$
\begin{aligned}
\int_{-1 / 2}^{1 / 2} e^{x^{2}} d x & =2 \cdot \int_{0}^{1 / 2} e^{x^{2}} d x \\
& =2 \cdot \int_{0}^{1 / 2} 1+x^{2}+R_{2}\left(e^{x^{2}}, 0\right) d x
\end{aligned}
$$

we can use the bounds that we've found for $R_{2}\left(e^{x^{2}}, 0\right)$ on the interval $[0,1 / 2]$ to get bounds on this integral:

$$
\begin{aligned}
\int_{-1 / 2}^{1 / 2} e^{x^{2}} d x & =2 \cdot \int_{0}^{1 / 2} 1+x^{2}+R_{2}\left(e^{x^{2}}, 0\right) d x \\
& \leq 2 \cdot \int_{0}^{1 / 2} 1+x^{2}+\frac{14}{6} x^{3} d x \\
& =\left.2 \cdot\left(x+\frac{x^{3}}{3}+\frac{14}{24} x^{4}\right)\right|_{0} ^{1 / 2} \\
& =2 \cdot\left(\frac{1}{2}+\frac{1}{24}+\frac{7}{192}\right) \\
& =\frac{13}{12}+\frac{14}{192}, \text { and } \\
\int_{-1 / 2}^{1 / 2} e^{x^{2}} d x & =2 \cdot \int_{0}^{1 / 2} 1+x^{2}+R_{2}\left(e^{x^{2}}, 0\right) d x \\
& \geq 2 \cdot \int_{0}^{1 / 2} 1+x^{2}+0 d x \\
& =\left.2 \cdot\left(x+\frac{x^{3}}{3}\right)\right|_{0} ^{1 / 2} \\
& =\frac{13}{12}
\end{aligned}
$$

Thus, we've shown that this integral lies somewhere between $13 / 12$ and $13 / 12+$ $14 / 192$, which is as accurate as we wanted.

## 3. Problem 3: Integration techniques

## Question 3.1.

(1) Find the area bounded between the two curves $f(t)=\frac{1}{\sin (t)}$ and $g(t)=t e^{t}$ from $\pi / 2$ to $x^{2}$, where $x^{2} \in(\sqrt{\pi / 2}, \sqrt{3 \pi / 4})$.
(2) If $F(x)$ is the function that on input $x$ returns the above area, what's $F^{\prime}(x)$ ?

Proof. (1): We start by graphing both of these functions, so that we can better understand the area we're trying to calculate:


As we can see in the picture above, $t e^{t}$ is always greater than $\frac{1}{\sin (t)}$ on the interval we're studying: therefore, the area bounded between the two curves is just the difference between the area bounded by $g(t)$ and the area bounded by $f(t)$ : i.e.

$$
\text { area }=\int_{\pi / 2}^{x^{2}} t e^{t} d t-\int_{\pi / 2}^{x^{2}} \frac{1}{\sin (t)} d t
$$

To calculate the first integral, we proceed via integration by parts, setting

$$
\begin{array}{ll}
u=t & d v=e^{t} d t \\
d u=d t & v=e^{t}
\end{array}
$$

This tells us that

$$
\begin{aligned}
\int_{\pi / 2}^{x^{2}} t e^{t} d t & =\left.t e^{t}\right|_{\pi / 2} ^{x^{2}}-\int_{\pi / 2}^{x^{2}} e^{t} d t \\
& =\left.\left(t e^{t}-e^{t}\right)\right|_{\pi / 2} ^{x^{2}} \\
& =\left(x^{2}-1\right) e^{x^{2}}-\frac{\pi^{2}-1}{4} e^{\pi^{2} / 4}
\end{aligned}
$$

To find the second integral, we first notice the following algebraic identity:

$$
\begin{aligned}
\frac{1}{\sin (t)} & =\frac{\sin (t)}{\sin ^{2}(t)} \\
& =\frac{\sin (t)}{1-\cos ^{2}(t)} \\
& =\frac{1}{2}\left(\frac{\sin (t)}{1+\cos (t)}+\frac{\sin (t)}{1-\cos (t)}\right)
\end{aligned}
$$

(We did something very similar on Friday, wk. 7, to calculate the integral of $\sec (x)$.) With this identity, we can then use integration by substitution (with the two substitutions $u=1 \pm \cos (x), d u=\mp \sin (x))$ to find the second integral:

$$
\begin{aligned}
\int_{\pi / 2}^{x^{2}} \frac{1}{\sin (t)} d t & =\int_{\pi / 2}^{x^{2}} \frac{1}{2}\left(\frac{\sin (t)}{1+\cos (t)}+\frac{\sin (t)}{1-\cos (t)}\right) d t \\
& =\frac{1}{2} \cdot \int_{\pi / 2}^{x^{2}} \frac{\sin (t)}{1+\cos (t)} d t+\frac{1}{2} \cdot \int_{\pi / 2}^{x^{2}} \frac{\sin (t)}{1-\cos (t)} d t \\
& =\frac{1}{2} \cdot \int_{1+\cos (\pi / 2)}^{1+\cos \left(x^{2}\right)}-\frac{1}{u} d u+\frac{1}{2} \cdot \int_{1-\cos (\pi / 2)}^{1-\cos \left(x^{2}\right)} \frac{1}{u} d u \\
& =\left.\frac{1}{2}(-\ln (|u|))\right|_{1} ^{1+\cos \left(x^{2}\right)}+\left.\frac{1}{2}(\ln (|u|))\right|_{1} ^{1-\cos \left(x^{2}\right)} \\
& =-\frac{1}{2} \ln \left(\left|1+\cos \left(x^{2}\right)\right|\right)+\frac{1}{2} \ln \left(\mid 1-\cos \left(x^{2} \mid\right)\right. \\
& =\frac{1}{2} \ln \left(\left\lvert\, \frac{1-\cos \left(x^{2}\right)}{1+\cos \left(x^{2}\right) \mid}\right.\right)
\end{aligned}
$$

Combining, we have that

$$
\begin{aligned}
\text { area } & =\int_{\pi / 2}^{x^{2}} t e^{t} d t-\int_{\pi / 2}^{x^{2}} \frac{1}{\sin (t)} d t \\
& =\left(x^{2}-1\right) e^{x^{2}}-\frac{\pi^{2}-1}{4} e^{\pi^{2} / 4}-\frac{1}{2} \ln \left(\left|\frac{1-\cos \left(x^{2}\right)}{1+\cos \left(x^{2}\right)}\right|\right)
\end{aligned}
$$

Ugly: yes. But an answer!
(2): So, we *could* just calculate the derivative of the above. But that would be awful! Instead, let's use the first fundamental theorem of calculus (which applies here b/c everything's continuous and integrable and bounded on this domain.)

Specifically, notice that we can write $F(x)=G\left(x^{2}\right)$, where

$$
G(x)=\int_{\pi / 2}^{x}\left(t e^{t}-\frac{1}{\sin (t)}\right) d t
$$

Then, the chain rule says that

$$
F^{\prime}(x)=2 x \cdot G^{\prime}\left(x^{2}\right)
$$

and the fundamental theorem of calculus says that

$$
G^{\prime}(x)=x e^{x}-\frac{1}{\sin (x)}
$$

Combining, we have

$$
F^{\prime}(x)=2 x \cdot\left(x^{2} e^{x^{2}}-\frac{1}{\sin \left(x^{2}\right)}\right)
$$

which was certainly an easier derivation than calculuating the derivative through brute force!
4. Problem 4: Sequences, Limits, $e^{x}$, and L'Hôpital

Question 4.1. Prove that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Proof. First, notice that if we expand $\left(1+\frac{x}{n}\right)^{n}$ via the binomial theorem, we have

$$
\begin{aligned}
\left(1+\frac{x}{n}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k} \frac{x^{k}}{n^{k}} \\
& =1+\binom{n}{1} \frac{x}{n}+\binom{n}{2} \frac{x^{2}}{n^{2}}+\ldots+\binom{n}{n} \frac{x^{n}}{n^{n}} \\
& =1+\frac{n}{1!} \frac{x}{n}+\frac{n(n-1)}{2!} \frac{x^{2}}{n^{2}}+\ldots+\frac{n!}{n!} \frac{x^{n}}{n^{n}} \\
& =1+\frac{n}{n} \frac{x}{1!}+\frac{n(n-1)}{n^{2}} \frac{x^{2}}{2!}+\ldots+\frac{n!}{n^{n}} \frac{x^{n}}{n!} .
\end{aligned}
$$

From this expansion, we can deduce two things:
(1) Because $\frac{n(n-1) \cdot \ldots(n-(k-1))}{n^{k}} \leq \frac{n^{k}}{n^{k}}=1$, we know that this sum is bounded above by the sum $\sum^{n} \frac{x^{k}}{k!}$, which is in turn bounded above by the infinte series $\sum^{\infty} \frac{x^{k}}{k!}$, which converges by the ratio test.
(2) If we examine the term $\frac{n(n-1) \cdots(n-(k-1))}{n^{k}}$, we can in fact see that these all increase as $n$ increases. Specifically, we can write

$$
\begin{aligned}
\frac{n(n-1) \cdot \ldots(n-(k-1))}{n^{k}} & =\frac{n}{n} \cdot \frac{n-1}{n} \cdot \ldots \cdot \frac{n-(k-1)}{n} \\
& =1 \cdot\left(1-\frac{1}{n}\right) \cdot\left(1-\frac{2}{n}\right) \cdot \ldots \cdot\left(1-\frac{k-1}{n}\right)
\end{aligned}
$$

and it's clear that increasing $n$ increases the value of this term.
We've just proven that the terms $\left(1+\frac{x}{n}\right)^{n}$ form a monotone-increasing sequence that's bounded above. Therefore, it must have a limit! Call this limit $y$.

We claim that for any $x, \ln (y)=x$ - in other words, that $y$ is an inverse function to $\ln$, and therefore that $y=e^{x}$ (which is what we want to prove.)

To see this, we examine $\ln (y)$, and use the fact that continuous functions like $\ln$ can pass through limits:

$$
\begin{aligned}
\ln (y) & =\ln \left(\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(\left(1+\frac{x}{n}\right)^{n}\right) \\
& =\lim _{n \rightarrow \infty} n \ln \left(1+\frac{x}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{x}{n}\right)}{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{x \ln \left(1+\frac{x}{n}\right)}{x / n} \\
& =x \cdot \lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{x}{n}\right)}{x / n}
\end{aligned}
$$

So: we now make the substitution $h=x / n$, and switch from evaluating the limit as $n \rightarrow \infty$ to looking at the limit as $h \rightarrow 0$ :

$$
\begin{aligned}
\ln (y) & =x \cdot \lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{x}{n}\right)}{x / n} \\
& =x \cdot \lim _{n \rightarrow \infty} \frac{\ln (1+h)}{h} .
\end{aligned}
$$

Because both the top and bottom go to 0 as $h \rightarrow 0$, we can use L'Hôpital's rule (or even just the definition of the derivative for $\ln )$ to see that

$$
\begin{aligned}
\ln (y) & =x \cdot \lim _{n \rightarrow \infty} \frac{\ln (1+h)}{h} \\
& =x \cdot \lim _{n \rightarrow \infty} \frac{\frac{1}{1+h}}{1} \\
& =x .
\end{aligned}
$$

So $\ln (y)=x$, for any $x$ : i.e. $y=e^{x}$, as claimed.

