MATH 8, SECTION 1 - FINAL REVIEW NOTES (EXAMPLES)

TA: PADRAIC BARTLETT

ABSTRACT. These are the other half of the notes from Monday, Dec. 6rd’s
final review; here, we study examples of the major concepts encountered this
quarter.

1. PROBLEM 1: ¢-0 PROOFS AND COMPLEX POLAR COORDINATES

Question 1.1.

(1) Prove that f(x) = 23 — 1 is a continuous function on all of R.
(2) What are this function’s roots over C?
(3) What are this function’s global minima and mazima over the interval [—1,1] %

Proof. (1): To prove this, let’s try using the “Blueprint for € — ¢ proofs” in the
notes/final review handout. Specifically, let’s do the following:

(1) First, let’slook at |f(z)— f(a)|, and try to create a simple bound depending
only on |z — a| and some constants.

If(x) = fla)| = |2 —1—a®>+ 1| = |2® — a®| = |z — a - |2 + za + d?|.

If 2 is within, say, 1 of a, we know that we can bound this quantity |z? +
ra + a?| as follows:

|2% 4+ za + a?| < |(a+1)* + ala+ 1) +d?| < 3(a + 1)?,

which is a constant! Therefore, whenever z is within 1 of a, we have the
following simple bound:

[f(z) = f(@)] < |z —al - (3(a +1)?).

(2) Now that we have this nice constant bound, we want to pick ¢ such that
whenever |z —a| < 6, |f(z) — f(a)| < e. To do this, we simply want to pick
¢ such that

e ) < 1, so that x is always forced to be within 1 of a, and we have our
nice constant bound, and

e /< m, because this means that

[f(z) = f(a)] < |z —al - (3(a +1)*) <

€

mﬁ(aﬂ)?:e
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So: let § < min (1, W)
Then ¢ is smaller than both 1 and W, and so both of our above
statements hold! In particular, for any epsilon, this choice of § forces

[f(z) = f(a) <e,

which is exactly what we want to do in an € — § proof to show continuity.

(2): Finding this function’s roots over C is equivalent to finding all of the values
of z such that

1==z".

To do this: first, remember that we can write any nonzero point in C with polar
codrdinates (7, 0) uniquely in the form re’?, where r € (0,00) and 6 € [0, 27]. Then,
we’re just looking for all of the values r, 6 such that

1 =363,
Notice that if the above equation holds, then we have that
1= |7,3€3w‘ _ ’7,3| ) |63i6|.

However, if we use the formula e = cos(z) + isin(x) and the definition |a + bi| =

va? + b2, we can see that
|e3i0’ = |cos(30) + isin(36))

= y/cos2(30) + sin?(30)

Vi
=1.

Therefore, we in fact have that r3 = 1; i.e. » = 1! All we have to do now is then
solve for 6.

We do this in a similar way: if we have 3 = 1, by using e** = cos(x) + i sin(z)
again, we must have that

1 = cos(30) + isin(36)
= cos(30) = 1, and sin(360) = 0.

The three values § = 0,27/3,47/3 are solutions to the above, and therefore cor-
respond to the three roots 1,e2™/3 e%7/3 of f(z) = 2% — 1; by the fundamental
theorem of calculus, we know that there are only three roots, and thus that we’ve
found them all.

(3): Finally, we can find the minima and maxima of this (now real-valued, again)
function on [—1,1] by simply taking its derivative. As f/(x) = 3z has its only 0 at
0, we know (by the extremal value theorem) that the only points we have to check
for extrema are x = —1,0, and 1. Because f(—1) = —2, f(0) = —1, and f(1) =0,
we know that its global maxima on this interval is 0 and its global minima is-2. O
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2. PROBLEM 2: TAYLOR POLYNOMIALS AND SERIES

Question 2.1.

(1) Find T, (e"’”2, 0), and the associated Taylor series for e®’

(2) Where does this Taylor series converge? Where does it converge absolutely?
Where does it com;erge uniformly?

(8) Approximate f 1/2€ *®dz with an error of about %.1.

Proof. (1): We proceed in a similar fashion to Wednesday, week 9’s notes. First,
recall that we can always write e?, for any value of ¢, as the following power series:

X in

: t
e = E 7'
n.

n=0

So, in specific, if we let t = 22, we have that

oo
22 Z‘Qn
€ = E 7'
n.
n=0

This motivates us to make the following claim:

Claim 2.2.
) n 2k
TQn (6z 70) = Z W
k=0

Proof. By a theorem from class/on page 8 of the final review handout, we know

that this is true iff ) _, k,k and % agree up to order 2n at 0. (This is because
the 2n-th Taylor polynomial of a function is the unique polynomial of degree < 2n
that agrees with its function up to order 2n.) Therefore, to prove our claim, it
suffices to show that

2 2k

x n x
e = 0 ST
lim —21@_0 kt
z—0 Rl

=0.

To see this: simply make the substitution y = 22. Then the left-hand-side above
becomes

k
Yy _ noy-
lim e’ — > ko fi

y—0 yn

)

which we know is 0 because T}, (e?,0) = %, and therefore these two functions agree
up to order n at 0. Therefore, we’ve proven that

() =3

and furthermore that e®’s Taylor series is precisely

oo

x2n
E "
7e0 n:
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(2): If we apply the ratio test, we can see that for any x € R,

2n+2 1 |
lim wn! = lim —— =0,

and therefore for any value of x, the series

o0

|z
Z n!
n=0

converges: i.e. that

0o
:L.2n

Z |

70 n.

converges absolutely. Therefore, because absolute convergence implies convergence,
we know that this power series converges on all of R.

Furthermore, we know from a theorem from class / from page 2 of the final review
handout that (for a power series F(x) = Y a,a™,) “if our power series converges at
some value z, then it converges uniformly to F(x) on any interval [—b,b], for any
b < |z|.” Therefore, we have that our Taylor series converges uniformly to e on
any interval [—b,b], for any b € RT.

(3): Finally, to approximate f,lﬁg

order Taylor polynomial and second-order error term:

et =Ty (e””Z, 0) + Ry (ewz, 0)

2 . 2 .
e” dx, we write € as the sum of its second-

=1+22+R, (ew2,0).

By Taylor’s theorem, we know that for z in the interval [0,1/2], we have

=~ 7 Cxr

3!

2 2
% (2336”” )
— c .3
= —x

3!
2 ((2 + 4m2)e”2)
3!
((120 + 803)602)

- X

3! ’

3
N 1
R2 (e” ,0) = PN

C&E?’

for some ¢ € (0,1/2).
So: because 59—; (ecz) is monotonically increasing, we know that we can find an

upper bound on it from by plugging in ¢ = 1/2, and a lower bound by plugging in
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¢ = 0. Doing this gives us 0 < 88—633 (ecz) < 14, by doing a few quick/dirty estimates

(i.e. /e <2, and evaluating the poly at 1/2 = 7.)
Applying this to our remainder function tells us that

14
0< Ro (em’?,o) < o

for x € (0,1/2). Consequently, because we can write the integral

/2 /2
/ e” dr =2 / e’ dx
~1/2 0

1/2 )
:2~/ 1+x2+R2<em,O)da@,
0

we can use the bounds that we’ve found for Rs (e”‘Q, 0) on the interval [0,1/2] to
get bounds on this integral:

/2, 1/2 )
/ emdx:2./ 1—|—x2—|—R2(ez,0>dx
0

—1/2

1/2 14 .
§2~/ 1+ 22+ —23dz
0 6

3 14 1/2
=2. T ot ‘
(a:—i— 3 +24x> o
1

=2 L +—+ !
B 2 24 192
13 14
= T+@7 and
/2 1/2 )
/ e’”dm:Q./ 1+x2+R2(e”,O)dw
-1/2 0

1/2
22-/ 1+ 2%+ 0dx
0

3\ (1/2
(33—1— 3> 0

Thus, we've shown that this integral lies somewhere between 13/12 and 13/12 +

14/192, which is as accurate as we wanted.
O
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3. PROBLEM 3: INTEGRATION TECHNIQUES

Question 3.1.

(1) Find the area bounded between the two curves f(t) = <= and g(t) = te!

sin(t)
from /2 to 2%, where x® € (\/7/2,/37/4).

(2) If F(x) is the function that on input x returns the above area, what’s F'(x)?

Proof. (1): We start by graphing both of these functions, so that we can better
understand the area we're trying to calculate:

As we can see in the picture above, te! is always greater than ﬁ on the

interval we're studying: therefore, the area bounded between the two curves is just
the difference between the area bounded by ¢(t) and the area bounded by f(¢): i.e.

2

I2 xr 1
area :/ teldt —/ - dt
/2 /2 Sln(t)

To calculate the first integral, we proceed via integration by parts, setting

u=-t dv = etdt
du=dt v=e.

IQ $2 12
/ teldt = te' - / etdt
/2 /2 /2

2
= (tet — et)

This tells us that

x

/2

2 27 2
z(z2—1)e:’3 _T 1 16” /4,
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To find the second integral, we first notice the following algebraic identity:

1 sin(t)
sin(t) sin®(t)
_ sin(t)
1 — cos?(t)

1 sin(t) sin(t)
2 (1 + cos(t) Tz cos(t)) '

(We did something very similar on Friday, wk. 7, to calculate the integral of
sec(z).) With this identity, we can then use integration by substitution ( with the
two substitutions u = 1 + cos(z), du = Fsin(x)) to find the second integral:

2

/z LI / YL sin() L osin@)
/2 sin(t) B x/2 2 \1+cos(t) 1—cos(t)
z? . z? :

/ sin(t) gt 1/ sin(t) gt
=2 1+ cos(t) 2 Jas2 1 —cos(t)
14-cos(z?) 1 1 1—cos(z?) 1
: / ——du+ - - / —du
1+4cos(w/2) U 2 1—cos(w/2) U

1+cos(z?) 1 1—cos(z?)
(~m(u)| "+ 5 ()|

= _%m (|1 + cos(a?)]) + %ln (J1 = cos(a?|)

_ %m (’1—cos(w2) )

1+ cos(z?)

|~

N = N =

1

Combining, we have that

2

2
area :/ tetdt —/ - dt
w/2 /2 Sln(t)
1

2 2
9 2 =1 e, 1 1 — cos(z?)

= (22 -1 _ I P )
(v Je 1 © 2 (‘ 1+ cos(x?)

Ugly: yes. But an answer!

(2): So, we *could* just calculate the derivative of the above. But that would be
awful! Instead, let’s use the first fundamental theorem of calculus (which applies
here b/c everything’s continuous and integrable and bounded on this domain.)

Specifically, notice that we can write F(z) = G(2?), where

Glz) = L ; (tet - Sml(t)> dt
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Then, the chain rule says that
F'(z) =2z - G'(2?),

and the fundamental theorem of calculus says that

1
G'(z) = ze® — .
(2) = we sin(zx)
Combining, we have
1
Fl(2) =22 22 — ——
(z) T (m e sin(x2)> ,

which was certainly an easier derivation than calculuating the derivative through
brute force! 0

4. PROBLEM 4: SEQUENCES, LIMITS, e*, AND L’HOPITAL
Question 4.1. Prove that
x n
lim (1 + 7> =e”.
n—00 n
Proof. First, notice that if we expand (1 + %)n via the binomial theorem, we have

k

(5 =3 ()

_1+nx+nz2+ +nx”
- 1)n 2)n2 T n) nm

nr n(n—1)2? nl z"
=14 -4+ 4=
1ln 2! n? n!nn
nz n(n—1)z2 n! "
n 1! n 2! n" n!

From this expansion, we can deduce two things:
(1) Because "("_1)‘“7‘1(,11_(16_1)) < %: = 1, we know that this sum is bounded

above by the sum " ””k—’:, which is in turn bounded above by the infinte

series >~ %’;7 which converges by the ratio test.
(2) If we examine the term ”("71)"'7‘1([17(]“71)), we can in fact see that these all
increase as n increases. Specifically, we can write
nn—1)-...(n—(k—1)) n n-1 n—(k—1)

B

and it’s clear that increasing n increases the value of this term.

We’ve just proven that the terms (1 + %)n form a monotone-increasing sequence
that’s bounded above. Therefore, it must have a limit! Call this limit y.

We claim that for any x, In(y) = x — in other words, that y is an inverse function
to In, and therefore that y = e* (which is what we want to prove.)
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To see this, we examine In(y), and use the fact that continuous functions like In
can pass through limits:

In(y) =In ( lim (1 + %)n)

n—oo
= lim In ((1 + E)n>
n—o00 n
lim nln (1 + f)
n—o0 n
In(l1+ 2%
g BOAFE)
n— 00 1/n
zln (1 + %)

= lim
n—00 aj/n

n—00 m/'n,

So: we now make the substitution h = x/n, and switch from evaluating the limit
as n — 0o to looking at the limit as h — 0:

In (1+§)
1 =z lim ——n/
n(y) =@ im ——

In(1+h)

n—00 h

Because both the top and bottom go to 0 as h — 0, we can use L’Hdpital’s rule (or
even just the definition of the derivative for In ) to see that
In(1+nh
In(y) = z - lim In(1+h)

n—00 h

_1
n—oo |

= .

So In(y) = «, for any « : i.e. y = €*, as claimed. O



	1. Problem 1: - proofs and complex polar coördinates
	2. Problem 2: Taylor polynomials and series
	3. Problem 3: Integration techniques
	4. Problem 4: Sequences, Limits, ex, and L'Hôpital

