
MATH 8, SECTION 1 - FINAL REVIEW NOTES (EXAMPLES)

TA: PADRAIC BARTLETT

Abstract. These are the other half of the notes from Monday, Dec. 6rd’s

final review; here, we study examples of the major concepts encountered this

quarter.

1. Problem 1: ε-δ proofs and complex polar coördinates

Question 1.1.

(1) Prove that f(x) = x3 − 1 is a continuous function on all of R.
(2) What are this function’s roots over C?
(3) What are this function’s global minima and maxima over the interval [−1, 1]?

Proof. (1): To prove this, let’s try using the “Blueprint for ε − δ proofs” in the
notes/final review handout. Specifically, let’s do the following:

(1) First, let’s look at |f(x)−f(a)|, and try to create a simple bound depending
only on |x− a| and some constants.

|f(x)− f(a)| = |x3 − 1− a3 + 1| = |x3 − a3| = |x− a| · |x2 + xa+ a2|.

If x is within, say, 1 of a, we know that we can bound this quantity |x2 +
xa+ a2| as follows:

|x2 + xa+ a2| ≤ |(a+ 1)2 + a(a+ 1) + a2| ≤ 3(a+ 1)2,

which is a constant! Therefore, whenever x is within 1 of a, we have the
following simple bound:

|f(x)− f(a)| ≤ |x− a| · (3(a+ 1)2).

(2) Now that we have this nice constant bound, we want to pick δ such that
whenever |x− a| < δ, |f(x)− f(a)| < ε. To do this, we simply want to pick
δ such that
• δ < 1, so that x is always forced to be within 1 of a, and we have our

nice constant bound, and
• δ < ε

3(a+1)2 , because this means that

|f(x)− f(a)| ≤ |x− a| · (3(a+ 1)2) <
ε

3(a+ 1)2
· 3(a+ 1)2 = ε

1
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So: let δ < min
(

1, ε
3(a+1)2

)
.

Then δ is smaller than both 1 and ε
3(a+1)2 , and so both of our above

statements hold! In particular, for any epsilon, this choice of δ forces

|f(x)− f(a) < ε,

which is exactly what we want to do in an ε− δ proof to show continuity.

(2): Finding this function’s roots over C is equivalent to finding all of the values
of z such that

1 = z3.

To do this: first, remember that we can write any nonzero point in C with polar
coördinates (r, θ) uniquely in the form reiθ, where r ∈ (0,∞) and θ ∈ [0, 2π]. Then,
we’re just looking for all of the values r, θ such that

1 = r3e3iθ.

Notice that if the above equation holds, then we have that

1 =
∣∣r3e3iθ∣∣ =

∣∣r3∣∣ · ∣∣e3iθ∣∣ .
However, if we use the formula eix = cos(x) + i sin(x) and the definition |a+ bi| =√
a2 + b2, we can see that ∣∣e3iθ∣∣ = |cos(3θ) + i sin(3θ))

=

√
cos2(3θ) + sin2(3θ)

=
√

1

= 1.

Therefore, we in fact have that r3 = 1; i.e. r = 1! All we have to do now is then
solve for θ.

We do this in a similar way: if we have e3iθ = 1, by using eix = cos(x) + i sin(x)
again, we must have that

1 = cos(3θ) + i sin(3θ)

⇒ cos(3θ) = 1, and sin(3θ) = 0.

The three values θ = 0, 2π/3, 4π/3 are solutions to the above, and therefore cor-
respond to the three roots 1, e2iπ/3, e4iπ/3 of f(z) = z3 − 1; by the fundamental
theorem of calculus, we know that there are only three roots, and thus that we’ve
found them all.

(3): Finally, we can find the minima and maxima of this (now real-valued, again)
function on [−1, 1] by simply taking its derivative. As f ′(x) = 3x2 has its only 0 at
0, we know (by the extremal value theorem) that the only points we have to check
for extrema are x = −1, 0, and 1. Because f(−1) = −2, f(0) = −1, and f(1) = 0,
we know that its global maxima on this interval is 0 and its global minima is -2. �
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2. Problem 2: Taylor polynomials and series

Question 2.1.

(1) Find T2n

(
ex

2

, 0
)
, and the associated Taylor series for ex

2

.

(2) Where does this Taylor series converge? Where does it converge absolutely?
Where does it converge uniformly?

(3) Approximate
∫ 1/2

−1/2 e
x2

dx with an error of about ±.1.

Proof. (1): We proceed in a similar fashion to Wednesday, week 9’s notes. First,
recall that we can always write et, for any value of t, as the following power series:

et =

∞∑
n=0

tn

n!
.

So, in specific, if we let t = x2, we have that

ex
2

=

∞∑
n=0

x2n

n!
.

This motivates us to make the following claim:

Claim 2.2.

T2n

(
ex

2

, 0
)

=

n∑
k=0

x2k

k!
.

Proof. By a theorem from class/on page 8 of the final review handout, we know

that this is true iff
∑n
k=0

x2k

k! and ex
2

agree up to order 2n at 0. (This is because
the 2n-th Taylor polynomial of a function is the unique polynomial of degree ≤ 2n
that agrees with its function up to order 2n.) Therefore, to prove our claim, it
suffices to show that

lim
x→0

ex
2 −

∑n
k=0

x2k

k!

x2n
= 0.

To see this: simply make the substitution y = x2. Then the left-hand-side above
becomes

lim
y→0

ey −
∑n
k=0

yk

k!

yn
,

which we know is 0 because Tn(ey, 0) = yk

k! , and therefore these two functions agree
up to order n at 0. Therefore, we’ve proven that

T2n

(
ex

2

, 0
)

=

n∑
k=0

x2k

k!
,

and furthermore that ex
2

’s Taylor series is precisely

∞∑
n=0

x2n

n!
.

�
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(2): If we apply the ratio test, we can see that for any x ∈ R,

lim
n→∞

|x|2n+2/(n+ 1)!

|x|2n
n! = lim

n→∞

|x|2

n+ 1
= 0,

and therefore for any value of x, the series

∞∑
n=0

|x|2n

n!

converges: i.e. that

∞∑
n=0

x2n

n!

converges absolutely. Therefore, because absolute convergence implies convergence,
we know that this power series converges on all of R.

Furthermore, we know from a theorem from class / from page 2 of the final review
handout that (for a power series F (x) =

∑
anx

n,) “if our power series converges at
some value x, then it converges uniformly to F (x) on any interval [−b, b], for any

b < |x|.” Therefore, we have that our Taylor series converges uniformly to ex
2

on
any interval [−b, b], for any b ∈ R+.

(3): Finally, to approximate
∫ 1/2

−1/2 e
x2

dx, we write ex
2

as the sum of its second-

order Taylor polynomial and second-order error term:

ex
2

= T2

(
ex

2

, 0
)

+R2

(
ex

2

, 0
)

= 1 + x2 +R2

(
ex

2

, 0
)
.

By Taylor’s theorem, we know that for x in the interval [0, 1/2], we have

R2

(
ex

2

, 0
)

=

∂3

∂x3

(
ex

2
) ∣∣∣

c

3!
x3

=

∂2

∂x2

(
2xex

2
) ∣∣∣

c

3!
x3

=

∂
∂x

(
(2 + 4x2)ex

2
) ∣∣∣

c

3!
x3

=

(
(12c+ 8c3)ec

2
)

3!
x3,

for some c ∈ (0, 1/2).

So: because ∂3

∂c3

(
ec

2
)

is monotonically increasing, we know that we can find an

upper bound on it from by plugging in c = 1/2, and a lower bound by plugging in
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c = 0. Doing this gives us 0 ≤ ∂3

∂c3

(
ec

2
)
≤ 14, by doing a few quick/dirty estimates

(i.e. 4
√
e < 2, and evaluating the poly at 1/2 = 7.)

Applying this to our remainder function tells us that

0 ≤ R2

(
ex

2

, 0
)
≤ 14

6
x3,

for x ∈ (0, 1/2). Consequently, because we can write the integral∫ 1/2

−1/2
ex

2

dx = 2 ·
∫ 1/2

0

ex
2

dx

= 2 ·
∫ 1/2

0

1 + x2 +R2

(
ex

2

, 0
)
dx,

we can use the bounds that we’ve found for R2

(
ex

2

, 0
)

on the interval [0, 1/2] to

get bounds on this integral:∫ 1/2

−1/2
ex

2

dx = 2 ·
∫ 1/2

0

1 + x2 +R2

(
ex

2

, 0
)
dx

≤ 2 ·
∫ 1/2

0

1 + x2 +
14

6
x3dx

= 2 ·
(
x+

x3

3
+

14

24
x4
) ∣∣∣1/2

0

= 2 ·
(

1

2
+

1

24
+

7

192

)
=

13

12
+

14

192
, and∫ 1/2

−1/2
ex

2

dx = 2 ·
∫ 1/2

0

1 + x2 +R2

(
ex

2

, 0
)
dx

≥ 2 ·
∫ 1/2

0

1 + x2 + 0dx

= 2 ·
(
x+

x3

3

) ∣∣∣1/2
0

=
13

12
.

Thus, we’ve shown that this integral lies somewhere between 13/12 and 13/12 +
14/192, which is as accurate as we wanted.

�
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3. Problem 3: Integration techniques

Question 3.1.

(1) Find the area bounded between the two curves f(t) = 1
sin(t) and g(t) = tet

from π/2 to x2, where x2 ∈ (
√
π/2,

√
3π/4).

(2) If F (x) is the function that on input x returns the above area, what’s F ′(x)?

Proof. (1): We start by graphing both of these functions, so that we can better
understand the area we’re trying to calculate:

π/2 x2 π

1

f(t)

g(t)

As we can see in the picture above, tet is always greater than 1
sin(t) on the

interval we’re studying: therefore, the area bounded between the two curves is just
the difference between the area bounded by g(t) and the area bounded by f(t): i.e.

area =

∫ x2

π/2

tetdt−
∫ x2

π/2

1

sin(t)
dt.

To calculate the first integral, we proceed via integration by parts, setting

u = t dv = etdt
du = dt v = et.

This tells us that ∫ x2

π/2

tetdt = tet
∣∣∣x2

π/2
−
∫ x2

π/2

etdt

=
(
tet − et

) ∣∣∣x2

π/2

=
(
x2 − 1

)
ex

2

− π2 − 1

4
eπ

2/4.
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To find the second integral, we first notice the following algebraic identity:

1

sin(t)
=

sin(t)

sin2(t)

=
sin(t)

1− cos2(t)

=
1

2

(
sin(t)

1 + cos(t)
+

sin(t)

1− cos(t)

)
.

(We did something very similar on Friday, wk. 7, to calculate the integral of
sec(x).) With this identity, we can then use integration by substitution ( with the
two substitutions u = 1± cos(x), du = ∓ sin(x)) to find the second integral:∫ x2

π/2

1

sin(t)
dt =

∫ x2

π/2

1

2

(
sin(t)

1 + cos(t)
+

sin(t)

1− cos(t)

)
dt

=
1

2
·
∫ x2

π/2

sin(t)

1 + cos(t)
dt+

1

2
·
∫ x2

π/2

sin(t)

1− cos(t)
dt

=
1

2
·
∫ 1+cos(x2)

1+cos(π/2)

− 1

u
du+

1

2
·
∫ 1−cos(x2)

1−cos(π/2)

1

u
du

=
1

2
(− ln (|u|))

∣∣∣1+cos(x2)

1
+

1

2
(ln (|u|))

∣∣∣1−cos(x2)

1

= −1

2
ln
(∣∣1 + cos(x2)

∣∣)+
1

2
ln
(∣∣1− cos(x2

∣∣)
=

1

2
ln

(∣∣∣∣1− cos(x2)

1 + cos(x2)

∣∣∣∣) .
Combining, we have that

area =

∫ x2

π/2

tetdt−
∫ x2

π/2

1

sin(t)
dt

=
(
x2 − 1

)
ex

2

− π2 − 1

4
eπ

2/4 − 1

2
ln

(∣∣∣∣1− cos(x2)

1 + cos(x2)

∣∣∣∣) .
Ugly: yes. But an answer!

(2): So, we *could* just calculate the derivative of the above. But that would be
awful! Instead, let’s use the first fundamental theorem of calculus (which applies
here b/c everything’s continuous and integrable and bounded on this domain.)

Specifically, notice that we can write F (x) = G(x2), where

G(x) =

∫ x

π/2

(
tet − 1

sin(t)

)
dt.
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Then, the chain rule says that

F ′(x) = 2x ·G′(x2),

and the fundamental theorem of calculus says that

G′(x) = xex − 1

sin(x)
.

Combining, we have

F ′(x) = 2x ·
(
x2ex

2

− 1

sin(x2)

)
,

which was certainly an easier derivation than calculuating the derivative through
brute force! �

4. Problem 4: Sequences, Limits, ex, and L’Hôpital

Question 4.1. Prove that

lim
n→∞

(
1 +

x

n

)n
= ex.

Proof. First, notice that if we expand
(
1 + x

n

)n
via the binomial theorem, we have(

1 +
x

n

)n
=

n∑
k=0

(
n

k

)
xk

nk

= 1 +

(
n

1

)
x

n
+

(
n

2

)
x2

n2
+ . . .+

(
n

n

)
xn

nn

= 1 +
n

1!

x

n
+
n(n− 1)

2!

x2

n2
+ . . .+

n!

n!

xn

nn

= 1 +
n

n

x

1!
+
n(n− 1)

n2
x2

2!
+ . . .+

n!

nn
xn

n!
.

From this expansion, we can deduce two things:

(1) Because n(n−1)·...(n−(k−1))
nk ≤ nk

nk = 1, we know that this sum is bounded

above by the sum
∑n xk

k! , which is in turn bounded above by the infinte

series
∑∞ xk

k! , which converges by the ratio test.

(2) If we examine the term n(n−1)·...(n−(k−1))
nk , we can in fact see that these all

increase as n increases. Specifically, we can write

n(n− 1) · . . . (n− (k − 1))

nk
=
n

n
· n− 1

n
· . . . · n− (k − 1)

n

= 1 ·
(

1− 1

n

)
·
(

1− 2

n

)
· . . . ·

(
1− k − 1

n

)
,

and it’s clear that increasing n increases the value of this term.

We’ve just proven that the terms
(
1 + x

n

)n
form a monotone-increasing sequence

that’s bounded above. Therefore, it must have a limit! Call this limit y.
We claim that for any x, ln(y) = x – in other words, that y is an inverse function

to ln, and therefore that y = ex (which is what we want to prove.)
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To see this, we examine ln(y), and use the fact that continuous functions like ln
can pass through limits:

ln(y) = ln
(

lim
n→∞

(
1 +

x

n

)n)
= lim
n→∞

ln
((

1 +
x

n

)n)
= lim
n→∞

n ln
(

1 +
x

n

)
= lim
n→∞

ln
(
1 + x

n

)
1/n

= lim
n→∞

x ln
(
1 + x

n

)
x/n

= x · lim
n→∞

ln
(
1 + x

n

)
x/n

So: we now make the substitution h = x/n, and switch from evaluating the limit
as n→∞ to looking at the limit as h→ 0:

ln(y) = x · lim
n→∞

ln
(
1 + x

n

)
x/n

= x · lim
n→∞

ln (1 + h)

h
.

Because both the top and bottom go to 0 as h→ 0, we can use L’Hôpital’s rule (or
even just the definition of the derivative for ln ) to see that

ln(y) = x · lim
n→∞

ln (1 + h)

h

= x · lim
n→∞

1
1+h

1
= x.

So ln(y) = x, for any x : i.e. y = ex, as claimed. �
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