
MATH 8, SECTION 1 - FINAL REVIEW NOTES (DEFINITIONS)

TA: PADRAIC BARTLETT

Abstract. These are the definition-half of the notes from Monday, Dec. 6rd’s

final review; here, we summarize all of the major results we’ve discussed this

quarter.

1. Bestiary of Functions

For convenience’s sake, we list the definitions, integrals, derivatives, and key
values of several functions here.

Name Domain Derivative Integral Key Values
ln(x) (0,∞) 1/x x · ln(x)− x+ C ln(1) = 0,

ln(e) = 1
ex R ex ex + C e0 = 1,

e1 = e
sin(x) R cos(x) − cos(x) + C sin(0) = 0,

sin
(
π
4

)
=
√
2
2 ,

sin
(
π
2

)
= 1

cos(x) R − sin(x) sin(x) + C cos(0) = 1,

cos
(
π
4

)
=
√
2
2 ,

cos
(
π
2

)
= 0

tan(x) x 6= 2k+1
2 π sec2(x) ln | sec(x)|+ C tan(0) = 0,

tan
(
π
4

)
= 1

sec(x) x 6= 2k+1
2 π sec(x) tan(x) ln | sec(x) + tan(x)|+ C sec(0) = 1,

sec
(
π
4

)
= 2
√
2

2

csc(x) x 6= kπ − csc(x) cot(x) ln | csc(x)− cot(x)|+ C csc
(
π
4

)
= 2
√
2

2 ,
sec
(
π
2

)
= 1

cot(x) x 6= kπ − csc2(x) ln | sin(x)|+ C cot
(
π
4

)
= 1,

cot
(
π
2

)
= 0

arcsin(x) (−1, 1) 1√
1−x2

x arcsin(x) +
√

1− x2 + C arcsin (0) = 0,

arcsin (1) = π
2

arccos(x) (−1, 1) − 1√
1−x2

x arccos(x)−
√

1− x2 + C arccos (0) = π
2 ,

arcsin (1) = 0

arctan(x) R 1
1+x2 x arctan(x)− ln(1+x2)

2 + C arctan (0) = 0,

arctan (1) = π
2

1
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2. Concepts and Theorems

In this section, we list several of the most important concepts we’ve studied this
quarter:

2.1. Sequences and Series. 1

2.1.1. Basic Definitions.

(1) Sequence: A sequence is just a collection {an}∞n=1 of objects (usually
numbers) indexed by N.

(2) Convergence: A sequence {an}∞n=1 of numbers – either complex or real!
– converges to some value λ (i.e. limn→∞ an = λ ) if

(∀ε)(∃N)(∀n > N) |an − λ| < ε.

(3) Series: Given any sequence {an}∞n=1 of numbers, we can look at the limit

of the partial sums of this sequence
{∑N

n=1 an

}∞
N=1

. If this sequence of

partial sums converges, we call the limit of these partial sums the series
corresponding to the sequence {an}∞n=1.

(4) Absolute convergence: A series
∑∞
n=1 an converges absolutely iff the

series
∑∞
n=1 |an| converges; it converges conditionally iff the series

∑∞
n=1 an

converges and the series of absolute values
∑∞
n=1 |an| diverges.

(5) Power series: A power series is a series of the form
∑∞
n=0 anx

n. If the
an’s are all real numbers, then this is called a real power series; if they are
complex numbers, then this is a complex power series.

(6) Radius of convergence: For a given power series (either real or complex)∑∞
n=0 anx

n, we say that the radius of convergence of this series is some
value R ∈ R such that
• if x is a number such that |x| < R,

∑∞
n=0 anx

n converges, and
• if x is a number such that |x| > R,

∑∞
n=0 anx

n diverges.
Note that if |x| = R, we have no idea what happens: our sequence can
either converge or diverge.

(7) Pointwise convergence: A sequence of functions fn(x) is said to point-
wise converge to some function F (x) on some set X iff for any x ∈ X,
limn→∞ fn(x) = F (x).

(8) Uniform convergence: A sequence of functions fn(x) is said to uni-
formly converge to some function F (x) on some set X iff for any ε > 0,
there is some N such that for all n > N and x ∈ X, we have that
|fn(x)− F (x)| < ε.

2.1.2. Theorems and Tools.
For sequences:

(1) Monotone and bounded sequences: if the sequence {an}∞n=1 is bounded
above and nondecreasing, then it converges; similarly, if it is bounded above
and nonincreasing, it also converges.

(2) Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist
and are equal to some value l, and the sequence {cn}∞n=1 is such that an ≤
cn ≤ bn, for all n, then the limit limn→∞ cn exists and is also equal to l.

For real-valued series:

1Relevant lectures: Friday, wk. 2, Monday, wk. 3, Monday, wk. 3, Wednesday, wk. 3, Friday,
wk. 3, Friday, wk. 8, Friday, wk. 10.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk2_friday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk3_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk3_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk3_wednesday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk3_friday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk3_friday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk8_friday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk8_friday_notes_2010.pdf
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(1) Comparison test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences such that
0 ≤ an ≤ bn, then the following statement is true:( ∞∑

n=1

bn converges

)
⇒

( ∞∑
n=1

an converges

)
.

(2) Limit comparison test: If {an}∞n=1, {bn}∞n=1 are a pair of sequences of
positive numbers such that limn→∞

an
bn

= c 6= 0, then the following state-
ment is true:( ∞∑

n=1

bn converges

)
⇔

( ∞∑
n=1

an converges

)
.

(3) Alternating series test: If {an}∞n=1 is a sequence of numbers such that
• limn→∞ an = 0 monotonically, and
• the an’s alternate in sign, then

the series
∑∞
n=1 an converges.

(4) Ratio test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

an+1

an
= r,

then we have the following three possibilities:
• If r < 1, then the series

∑∞
n=1 an converges.

• If r > 1, then the series
∑∞
n=1 an diverges.

• If r = 1, then we have no idea; it could either converge or diverge.
(5) Root test: If {an}∞n=1 is a sequence of positive numbers such that

lim
n→∞

n
√
an = r,

then we have the following three possibilities:
• If r < 1, then the series

∑∞
n=1 an converges.

• If r > 1, then the series
∑∞
n=1 an diverges.

• If r = 1, then we have no idea; it could either converge or diverge.
(6) Integral test: If {an}∞n=k is a sequence of numbers and f(x) is a positive

monotone-decreasing function such that f(n) = an, then the series
∑∞
n=k an

converges iff the integral
∫∞
k
f(x)dx exists.

(7) Absolute convergence and convergence: If {an}∞n=1 is a sequence of
positive numbers such that

∑∞
n=1 |an| converges, then so does

∑∞
n=1 an.

(8) Vanishing criterion: If limn→∞ an 6= 0, then the series
∑∞
n=1 an diverges.

For power series:

(1) Radius of convergence, real: Every real-valued power series
∑∞
n=0 anx

n

has a radius of convergence R.
(2) Radius of convergence, complex: Every complex-valued power series∑∞

n=0 αnz
n has a radius of convergence R.

(3) Radius of convergence, agreement: Suppose that
∑∞
n=0 αnz

n is a
complex-valued power series where all of the αn’s are real numbers. Then
the radius of convergence of the complex power series

∑∞
n=0 αnz

n is the
same as that of the real power series formed from the same coefficients,∑∞
n=0 αnx

n.
(4) Power series and uniform convergence: Pick a real power series F (x) =∑∞

n=0 anx
n. Then, if our power series converges at some value x, then it
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converges uniformly to F (x) on any interval [−b, b], for any b < |x|. Fur-
thermore, the power series G(x) =

∑∞
n=1 nanx

n−1 also converges uniformly
on [−b, b], and G(x) = F ′(x) on [−b, b].

2.2. Limits and Continuity. 2

2.2.1. Basic Definitions.

(1) Limits: If f : X → Y is a function between two subsets X,Y of R, we say
that

lim
x→a

f(x) = L

if and only if

∀ε > 0,∃δ > 0 s.t. ∀x ∈ X, (|x− a| < δ)⇒ (|f(x)− L| < ε).

(2) Continuity: A function f : X → Y is said to be continuous at some
point a ∈ X iff

lim
x→a

f(x) = f(a).

2.2.2. Theorems and Tools.

(1) A blueprint for ε − δ proofs of limits: In class, we developed the
following “blueprint” that describes a general method for proving that
limx→a f(x) = L via an ε− δ argument. We review this below:
(a) First, examine the quantity

|f(x)− L|.
Specifically, try to find a simple upper bound for this quantity that
depends only on |x− a|, and goes to 0 as x goes to a – something like
|x− a| · (constants), or |x− a|3 · (bounded functions, like sin(x)).

(b) Using this simple upper bound, for any ε > 0, choose a value of δ such
that whenever |x−a| < δ, your simple upper bound |x−a| ·(constants)
is < ε. Often, you’ll define δ to be ε/(constants), or somesuch thing.

(c) Plug in the definition of the limit: for any ε > 0, we’ve found a δ such
that whenever |x− a| < δ, we have

|f(x)− L| < (simple upper bound depending on |x− a|) < ε.

If you’ve done all of this, you’ve proved limx→a f(x) = L.
(2) Squeeze theorem: If f, g, h are functions defined on some interval I \ {a}

such that

f(x) ≤ g(x) ≤ h(x),∀x ∈ I \ {a}, and

lim
x→a

f(x) = lim
x→a

h(x),

then limx→a g(x) exists, and is equal to the other two limits limx→a f(x), limx→a h(x).
(3) Intermediate value theorem: If f is a continuous function on [a, b], then

f takes on every value between f(a) and f(b) at least once.
(4) L’Hôpital’s rule: If f(x) and g(x) are a pair of differentiable functions

such that either
• limx→a f(x) = 0 and limx→a g(x) = 0, or

2Relevant lectures: Monday, wk. 4, Wednesday, wk. 4, Friday, wk. 4.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk4_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk4_wednesday_notes_uncensored_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk4_friday_notes_2010.pdf
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• limx→a f(x) = ±∞ and limx→a g(x) = ±∞,
then limx→a

f(x)
g(x) = limx→a

f ′(x)
g′(x) , whenever the second limit exists.

2.3. Differentiation. 3

2.3.1. Basic Definitions.

(1) The derivative: Given a function f defined on some neighborhood (a −
δ, a+ δ), we say that f is differentiable at a iff the limit

lim
h→0

f(a+ h)− f(a)

(a+ h)− a
exists. If it does, denote this limit as f ′(a).

(2) Critical points: For a function f defined on some set X, the critical
points of f on X are all of the points in x where either
• f ′(x) = 0, or
• f ′(x) doesn’t exist.

(3) Maxima and minima: For a function f defined on some interval (a, b),
a point x ∈ (a, b) is called a local maxima iff there is some small neigh-
borhood (x− δ, x+ δ) in which f(x) > f(t),∀t ∈ (x− δ, x+ δ).

Similarly, a point x ∈ (a, b) is called a local minima iff there is some
small neighborhood (x− δ, x+ δ) in which f(x) < f(t),∀t ∈ (x− δ, x+ δ).

2.3.2. Theorems and Tools.

(1) Product rule: For f , g a pair of functions differentiable at a,

(f(x) · g(x))′
∣∣∣
a

= f ′(a) · g(a) + g′(a) · f(a).

(2) Quotient rule: For f , g a pair of functions differentiable at a, g(a) 6= 0,
we have (

f(x)

g(x)

)′ ∣∣∣∣∣
a

=
f ′(a) · g(a)− g′(a) · f(a)

(g(a))2

(3) Chain rule: For f a function differentiable at g(a) and g a function dif-
ferentiable at a,

(f(g(x)))′
∣∣∣
a

= f ′(g(a)) · g′(a).

(4) Critical points and local minima/maxima:If x is a local minima or
maxima for some function f , x is a critical point of f .

(5) Critical points and global minima/maxima: If f is a continuous func-
tion on some interval [a, b], then f takes on its minima and maxima over
this entire region. Furthermore, f takes on these minimum and maximum
values at either the critical points of f or at the endpoints {a, b}.

3Relevant lectures: Monday, wk. 5, Wednesday, wk. 5, Wednesday, wk. 8.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk5_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk5_wednesday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk8_wednesday_notes_2010.pdf
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2.4. Integration. 4

2.4.1. Basic Definitions.

(1) The integral: A function f is integrable on the interval [a, b] if and only
if the following holds:
• For any ε > 0,
• there is a partition a = t0 < t1 < . . . < tn−1 < tn = b of the interval

[a, b] such that(
n∑
i=1

sup
x∈(ti−1,ti)

(f(x)) · length(ti−1, ti)−
n∑
i=1

inf
x∈(ti−1,ti)

(f(x)) · length(ti−1, ti)

)
< ε.

Pictorially, this is just saying that the area of the blue rectangles approaches
the area of the red rectangles in the picture below:

Because of this picture, we often say that the integral of a function on some
interval [a, b] is the area beneath its curve from x = a to x = b.

(2) Negligible: A set X ⊂ R is called negligible if for any ε > 0, there is
some collection {In}∞n=1 of closed intervals of positive length, such that

(1)

∞⋃
n=1

In, the union of all of these intervals, ⊇ X.

(2)

∞∑
n=1

length(In) ≤ ε.

Any countable or finite set is negligible.
(3) Primitive: A function f(x) has ϕ(x) as its primitive on some interval

[a, b] iff ϕ′(x) = f(x) on all of [a, b].

2.4.2. Theorems and Tools.

(1) Functions with a negligible set of discontinuities: If f(x) is a bounded
function on the interval [a, b], and the collection of f(x)’s discontinuities on
[a, b] is a negligible set, then the integral∫ b

a

f(x)dx

4Relevant lectures: Monday, wk. 6, Wednesday, wk. 6, Friday, wk. 6, Monday, wk. 7,
Wednesday, wk. 7, Friday, wk. 7.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk6_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk6_wednesday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk6_friday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk7_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk7_wednesday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk7_friday_notes_2010.pdf
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exists.
(2) The first fundamental theorem of calculus: Let [a, b] be some interval.

Suppose that f is a bounded and integrable function over the interval [a, x],
for any x ∈ [a, b]. Then the function

A(x) :=

∫ x

a

f(t)dt

exists for all x ∈ [a, b]. Furthermore, if f(x) is continuous, the derivative of
this function, A′(x), is equal to f(x).

(3) The second fundamental theorem of calculus: Let [a, b] be some
interval. Suppose that f(x) is a function that has ϕ(x) as its primitive on
[a, b]; as well, suppose that f(x) is bounded and integrable on [a, b]. Then,
we have that ∫ b

a

f(x)dx = ϕ(b)− ϕ(a).

(4) Integration by parts: If f, g are a pair of C1 functions on [a, b] – i.e they
have continuous derivatives on [a, b] – then we have∫ b

a

f(x)g′(x) = f(x)g(x)
∣∣∣b
a

=

∫ b

a

f ′(x)g(x)dx.

(5) Integration by substitution: If f is a continuous function on g([a, b])
and g is a C1 functions on [a, b], then we have∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(x)dx.

2.5. The Exponential and the Logarithm. 5

2.5.1. Basic Definitions.

(1) The natural logarithm: For x ∈ (0,∞), we define ln(x) =
∫ x
1

1
xdx.

(2) The exponential function: For any x ∈ R, we define exp(x) as the
unique value y such that ln(y) = x. In other words, exp(x) is the inverse
function to ln(x).

2.5.2. Theorems and Tools.

(1) exp and e: exp(x) = ex, where e is the mathematical constant equal to
exp(1) = 2.71 . . ..

(2) A third definition of ex:For any x, we have

ex = lim
n→∞

(
1 +

x

n

)n
.

5Relevant lectures: Friday, wk. 3, Wednesday, wk. 8, Monday, wk. 9.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk3_friday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk8_wednesday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk9_monday_notes_2010.pdf
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2.6. Taylor Series. 6

2.6.1. Basic Definitions.

(1) Taylor polynomials: For f(x) a n-times differentiable function at a, we
define the n-th Taylor polynomial of f(x) around a as the following
degree-n polynomial:

Tn(f(x), a) :=

n∑
n=0

f (n)(a)

n!
· (x− a)n.

(2) Remainder function: For f(x) a n-times differentiable function at a, we
define the n-th order remainder function of f(x) around a as follows:

Rn(f(x), a) = f(x)− Tn(f(x), a).

(3) Taylor series: For f(x) an infinitely-differentiable function at a, we define
its Taylor series as the following power series around a:

∞∑
n=0

f (n)(a)

n!
· (x− a)n.

If limn→∞Rn(f(x), a) = 0 at some value of x, then this Taylor series is in
fact equal to f(x) at x.

(4) Agreement up to order n: A pair of functions f(x), g(x) are said to
agree up to order n at a iff

lim
x→a

f(x)− g(x)

(x− a)n
= 0.

2.6.2. Theorems and Tools.

(1) Taylor polynomials agree up to order n with their functions: If
f(x) is a n-times differentiable function at a, then Tn(f(x), a) agrees with
f up to order n at a. Furthermore, Tn(f(x), a) is the only polynomial with
degree ≤ n that agrees with f(x) up to order n at a.

(2) Taylor’s theorem: If f(x) is a n+1-times differentiable function on some
open interval containing [a, x], then there is a value c in the set (a, x) such
that

Rn(f(x), a) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

(3) Several useful Taylor polynomials and series: The following functions
have the indicated Taylor polynomials and series, which converge on the
indicated regions:

T2n(cos(x), 0) =
∑n
k=0(−1)n x2n

(2n)! , cos(x) =
∑∞
k=0(−1)n x2n

(2n)! , ∀x ∈ R
T2n+1(sin(x), 0) =

∑n
k=0(−1)n x2n+1

(2n+1)! , sin(x) =
∑∞
k=0(−1)n x2n+1

(2n+1)! , ∀x ∈ R
Tn(ex, 0) =

∑n
k=0

xk

k! , ex =
∑∞
k=0

xk

k! , ∀x ∈ R
Tn(log(x+ 1), 0) =

∑n
k=1(−1)n+1 xn

x , log(x+ 1) =
∑∞
k=1(−1)n+1 xn

x , ∀ − 1 < x ≤ 1

T2n+1(arctan(x), 0) =
∑n
n=0

(−1)n
2n+1 x

2n+1, arctan(x) =
∑∞
n=0

(−1)n
2n+1 x

2n+1, ∀|x| < 1

Tn((x+ y)a, 0) =
∑n
k=0

(
a
k

)
xkya−k, (x+ y)a =

∑∞
k=0

(
a
k

)
xkya−k, ∀|x| < |y|

Tn

(
1

1−x , 0
)

=
∑n
k=0 x

k, 1
1−x =

∑∞
k=0 x

k, ∀|x| < 1

6Relevant lectures: Monday, wk. 9, Wednesday, wk. 9, Friday, wk. 10.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk9_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk9_wednesday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk10_friday_notes_2010.pdf
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2.7. The Complex Plane. 7

2.7.1. Basic Definitions.

(1) The complex plane: The complex plane is the collection of all points
of the form a+bi, where a, b are real numbers and i is the imaginary unit,
a symbol with the property that i2 = −1.

(2) Defining functions on C: We define sin(z), cos(z), and ez on the complex
plane as follows:

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+
z9

9!
− . . . ,

cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+
z8

8!
− . . . , and

ez = 1 + z +
z2

2
+
z3

3!
+
z4

4!
+
z5

5!
+ . . . .

2.7.2. Theorems and Tools.

(1) Polar coördinates and C: If z is a point in the complex plane with polar
coördinates (r, θ), then z = reiθ.

(2) The fundamental theorem of algebra: Any nonconstant polynomial
with coefficients in C has at least one root.

7Relevant lectures: Monday, wk. 10, Friday, wk. 10.

http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk10_monday_notes_2010.pdf
http://www.its.caltech.edu/~padraic/math8_2010/ma8_wk10_friday_notes_2010.pdf
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