
Math 1d Instructor: Padraic Bartlett

Lecture 7: Generating Functions

Week 8 Caltech - Winter 2012

1 Random Questions

Question 1.1. Consider the following process for generating a “random” graph on n ver-
tices:

• Take n vertices.

• For each pair of vertices, flip a coin; if it’s heads, put an edge between them, and if
it’s tails do not connect them with an edge.

Show that there are n(n−1)
2 many possible results of this process.

Suppose that you consider the same process, but now on N-many vertices. How many
graphs will occur with strictly positive probability1?

2 Generating Function and Dice

2.1 Generating Functions: An Introduction

Throughout the last few weeks of our class, we’ve repeatedly used our knowledge of se-
quences to study power series. In other words, our proofs have looked like the following:(

knowledge of {an}∞n=1

)
⇒

(
knowledge of

∞∑
n=1

anx
n

)
.

We’ve done this because, for the last few weeks, we’ve understood sequences better than we
understood power series. However, this is no longer necessarily true! With our knowledge
of power series and Taylor series, we have a large library of tools with which to study power
series.

Given this new state of affairs, it’s perhaps natural to ask if we can now reverse the
methods we described above. In other words: suppose that we have a sequence that we
want to study. What if we turned it into a power series, and used our knowledge of how
that power series works to answer questions about the original series? I.e. can we make
proofs that look like(

knowledge of

∞∑
n=1

anx
n

)
⇒

(
knowledge of {an}∞n=1

)
?

The answer to this question is a resounding yes! In mathematics, this process is called
the method of generating functions. A brief outline for how a generating function proof
goes is the following:

1I.e. if you pick a random integer from Z, the odds that the integer you picked is 1 is precisely 0: i.e.
the probability that you picked 1 is 0, which is not strictly positive. However, the odds that you picked a
positive integer are 1/2, which is a strictly positive probability.
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• Take some sequence {an}∞n=1 that you want to study.

• Look at the associated power series
∑∞

n=1 anx
n.

• Find a nice closed form (i.e. like
∑∞

n=0 x
n = 1

1−x) for this power series, using your
knowledge of Taylor series and power series.

• Use this closed form somehow to regain information about your original sequence. I.e.
your closed form may have a different expansion that you can figure out, via Taylor
series: therefore, because power series are unique, you know that the terms in this dif-
ferent expansion have to be equal to the terms

∑∞
n=1 anx

n in your original expansion!
In other words, you’ve found new information about your sequence {an}∞n=1!

A question two weeks ago on the HW, about Fibonacci numbers, was secretly a gen-
erating functions question in disguise! We revisit it here, and rephrase our solution in the
language that we described above:

Example. Recall, from the first problem set, the Fibonacci sequence:

f0 = 0, f1 = 1, fn = fn−1 + fn−2,∀n ≥ 2.

Using the method of generating functions, can we find a closed-form expression for the
elements fn: i.e .a way of calculating fn without having to find out what fn−1 and fn−2
are?

Answer: Let’s use the method of generating functions! Specifically, let’s look at the
power series

∞∑
n=0

fnx
n.

The only thing we know about the constants fn, at first, is their recurrence relation
fn = fn−1 +fn−2. So: let’s plug that in to our power series! Specifically, let’s plug that into
all of the terms fn with n ≥ 2, as those are the terms where this recurrence relation holds:

∞∑
n=0

fnx
n = f0 · x0 + f1 · x2 +

∞∑
n=2

fnx
n

= 0 + x +

∞∑
n=2

(fn−1 + fn−2)x
n

= x +

∞∑
n=2

fn−1x
n +

∞∑
n=2

fn−2x
n

= x + x
∞∑
n=2

fn−1x
n−1 + x2

∞∑
n=2

fn−2x
n−2

= x + x

∞∑
n=1

fnx
n + x2

∞∑
n=0

fnx
n
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where we justfied this last step by just shifting our indices (i.e. the sum starting at 2 of
fn−1x

n−1 is just the sum starting at 1 of fnx
n.) Finally, if we notice that because f0 = 0,

we have x
∑∞

n=1 fnx
n = x

∑∞
n=0 fnx

n, we finally have

∞∑
n=0

fnx
n = x + x

∞∑
n=0

fnx
n + x2

∞∑
n=0

fnx
n

⇒
∞∑
n=0

fnx
n − x

∞∑
n=0

fnx
n − x2

∞∑
n=0

fnx
n = x

⇒ (1− x− x2)
∞∑
n=0

fnx
n = x

⇒
∞∑
n=0

fnx
n =

x

1− x− x2
.

Sweet! A closed form. So: according to our blueprint, we want to use this closed form
to find information about our original series, possibly by finding another way to expand it.

Well: if we use partial fractions, we can see that (via algebra that you can check!)

1− x− x2 = (1− xr+) · (1− xr−)

(
where r+ =

1 +
√

5

2
, r− =

1−
√

5

2

)
⇒ x

1− x− x2
=

x

(1− xr+) · (1− xr−)

=
1

r+ − r−
·
(

1

1− xr+
− 1

1− xr−

)
=

1√
5
·
(

1

1− xr+
− 1

1− xr−

)
=

1√
5
·

( ∞∑
n=0

(xr+)n −
∞∑
n=0

(xr−)n

)

=
1√
5
·

( ∞∑
n=0

(rn+ − rn−)xn

)

So: we found a new way to expand our series! In particular, because power series are
unique, we know that the coefficients of this different way to expand our series must be the
same as the coefficients of our original power series

∑
fnx

n:

∞∑
n=0

fnx
n =

1√
5
·

( ∞∑
n=0

(rn+ − rn−)xn

)

⇒ fn =
rn+ − rn−√

5
.

So we have a closed form for the fn’s. In other words, it worked!
The rest of this lecture is devoted to studying a specific and particularly beautiful

example of this method: the study of nonstandard dice!
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2.2 Nonstandard Dice

Definition. Define a k-sided die as a k-sided shape on which symbols s1, . . . sk ∈ N+ are
drawn. Analogously, we can define a k-die to be a bucket with k balls in it, each stamped
with a symbol si ∈ N+. In this sense, “rolling” our die corresponds to picking a ball out of
our bucket; for intuitive purposes, pick whichever model makes more sense and feel free to
use it throughout this lecture.

For our lecture, we restrict all of our symbols to be positive integers: i.e. elements from
the set {1, 2, 3, 4, . . .}.

A standard k-sided die D is just a k-sided die with faces {1, 2, 3 . . . k}. For example, a
standard 6-die is just the normal 6-sided dice that you play most board games with.

The motivating question of this lecture is the following:

Question 1. Can you find two 6-sided dice B,C with the following property: for any n, the
probability that rolling B and C together and summing them yields n is the same as the
probability that rolling two standard 6-sided dice together and summing them yields n?

For example, the probability that (B + C = 7) would have to be 6
36 , because there

are 36 different ways for a pair of two 6-sided dice to be rolled, and there are precisely 6
different ways for a pair of standard 6-sided dice to sum to 7. Similarly, the probablity
for (B + C = 2) would have to be 1

36 , because there’s only one way for a pair of standard
6-sided dice to sum to 2.

To answer this, surprisingly, we need to use the language of generating functions2! To
do this, let’s use the following method of turning dice into sequences:

Definition. Given a k-sided die D, let dn denote the number of ways in which rolling D
yields a n. In this sense, the die D and the sequence {dn}∞n=1 are equivalent.

For a standard k-die D, the associated sequence {dn}∞n=1 is just

1, 1, 1 . . . 1︸ ︷︷ ︸
k 1’s

, 0, 0, . . .

Question 2. Take two dice B = {bn}∞n=1, C = {cn}∞n=1, and let

dn = the number of ways that rolling B,C and summing yields n.

What is {dn}∞n=1 in terms of the coefficients bn, cn?

Answer: How many ways can rolling B,C and summing give you n? Well: suppose you’ve
already rolled B and gotten a k. Then you need to roll a n− k on C to get a sum of n! In
other words,

dn = the number of ways that rolling B,C and summing yields n

=
n∑

k=1

(ways to roll B and get k) · (ways to roll C and get n− k)

=

n∑
k=1

bkcn−k.

2Well, you could try brute force and checking all 1012 possible pairs of dice with faces from {1, . . . 11},
but that would make for a very long and boring lecture.
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So: let A = {an}∞n=1 = {1, 1, 1, 1, 1, 1, 0, 0 . . .} be a standard 6-sided die. In the language
of sequences, then, we’re trying to find a pair of dice-sequences {bn}∞n=1, {cn}∞n=1 such that
for every n, we have

n∑
k=1

bkcn−k =
n∑

k=1

akan−k.

This looks. . . awful, right? In other words, we have a problem, and in the language of
sequences, it’s terrible. So: let’s use the method of generating functions to study these
sequences! After all, they can’t get much worse . . .

Question 3. If A = {an}∞n=1 is a standard k-die, what is the power series
∑∞

n=1 anx
n

associated to A?

Answer: As mentioned earlier, we have

{an}∞n=1 = {1, 1, 1 . . . 1︸ ︷︷ ︸
k 1’s

, 0, 0, . . .}.

Therefore, the associated power series to this sequence is just the polynomial

x + x2 + x3 + . . . + xk.

Notice that any power series associated to a k-sided dice D is just a polynomial, as any
k-sided dice has only finitely many faces, and therefore finitely many nonzero elements in
its associated sequence {dn}∞n=1.

Question 4. Let B = {bn}∞n=1, C = {cn}∞n=1, be a pair of dice, and let B(x) =
∑

bnx
n, C(x) =∑

cnx
n be their associated power series.

Let {dn} be the sequence associated to rolling both B,C and summing the result, as
discussed before. What is the power series associated to {dn}?
Answer: If we use our earlier observation about how we can formulate the dn’s in terms
of the bn, cn’s, we have

∞∑
n=1

dnx
n =

∞∑
n=0

(
n∑

k=0

bkcn−k

)
xn.

But this is just the product of the two polynomials B(x), C(x)! Specifically, you can check
by multiplying terms out via FOIL that( ∞∑

n=1

bnx
n

)
·

( ∞∑
n=1

cnx
n

)
=
∞∑
n=1

(
n∑

k=0

bkcn−k

)
xn,

and therefore that
∞∑
n=1

dnx
n =

( ∞∑
n=1

bnx
n

)
·

( ∞∑
n=1

cnx
n

)
= B(x) · C(x).

In other words, to get the generating function for the sum of two dice, we can simply
take the product of their individual generating functions!

So, in the language of generating functions, our question is now the following:
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Question 2.1. Find a pair of polynomials with integer coefficients B(x), C(x) such that

• B(x), C(x) both correspond to 6-sided dice: i.e. B(0) = C(0) = 0 [no 0-faces], B(1) =∑
bi = 6, C(1) =

∑
ci = 6 [they’re 6-sided], and all of the coefficients of B(x), C(x)

are positive [you can’t have a negative number of ways to roll a certain result.]

• Rolling B,C and summing is equivalent to rolling two standard 6-sided dice and sum-
ming: i.e. via our earlier work

B(x) · C(x) = (rolling B,C and summing, interpreted as a polynomial)

= (rolling 2 standard 6-dice and summing, interpreted as a polynomial)

= (x + x2 + x3 + x4 + x5 + x6)2.

• Neither B or C are standard dice: i.e. neither B(x) or C(x) are equal to x + x2 +
x3 + x4 + x5 + x6.

Now our question is just one about algebra! I.e. we’re just looking for a pair of poly-
nomials whose product is some specific polynomial, whose coefficients are all positive, and
that when you plug in 0 yield 0 and when you plug in 1 yield 6. This is doable!

Specifically: after playing around with the above polynomial, or talking to an alge-
braicist, you’ll realize that

(x + x2 + x3 + x4 + x5 + x6)2 = (x)2(x + 1)2(x2 + x + 1)2(x2 − x + 1)2.

More specifically, none of the terms (x), (x + 1), (x2 + x + 1), (x2 − x + 1) can be broken
up into smaller polynomials, and there is no way to break up this polynomial into different
integer polynomials. (In this sense, these polynomials (x), (x+ 1), (x2 + x+ 1), (x2− x+ 1)
are thought of as irreducible polynomials: you cannot break them into smaller parts, and
you cannot break anything made of these polynomials into different parts that does not
use them. A good analogy here is to the role of prime numbers in the integers: just like
any number can be broken up into a bunch of prime factors, any integer polynomial can be
broken up into a bunch of irreducible factors.)

So: the only thing for us to do now is find out if we can split these factors (x), (x +
1), (x2 + x + 1), (x2 − x + 1) into two polynomials, so that they both correspond to 6-sided
nonstandard dice.

Because x + 1 is 2 at x = 1, x2 + x + 1 is 3 at x = 1, and x2 − x + 1 is 1 at x = 1, we
know that each Ai(x) has to have exactly one copy of both x + 1 and x2 + x + 1 in it in
order for Ai(1) to be 6. As well, because they both need to be 0 at x = 0, we need to give
each polynomial a copy of x. Consequently, the only way we can have both of these dice
not be standard is if

B(x) = x(x + 1)(x2 + x + 1)(x2 − x + 1)2 = x8 + x6 + x5 + x4 + x3 + x,

C(x) = x(x + 1)(x2 + x + 1) = x4 + 2x3 + 2x2 + x;

i.e. we have one die with faces {8, 6, 5, 4, 3, 1} and one die with faces {4, 3, 3, 2, 2, 1}.
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Check this: they actually work! For example, there are precisely 6 ways in which rolling
these two dice yields 7, just like for a pair of standard 6-sided dice.

So, yeah: dice! Basically, if you take anything away from this course, it should be that
series can do everything.
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