
Math 1d Instructor: Padraic Bartlett

Lecture 6: Complex Numbers and Series

Week 7 Caltech - Winter 2012

1 Random Questions

Question 1.1. Show that in any group of 6 people, there are either three mutual acquain-
tances1 or three mutual strangers.

(Open:) Find the smallest value of n such that in any group of n people, there are either
5 mutual acquaintances or 5 mutual strangers.

Question 1.2. In class, we formed the complex numbers C by taking R and adding the
symbol i, where we thought of i as

√
−1.

Similarly, we can define the Gaussian integers as the set

Z[i] := {a+ bi : a, b ∈ Z},

formed by taking the integers and adding the symbol i.
Show that there is no set of three points α, β, γ ∈ Z[i] such that these three points form

the vertices of an equilateral triangle.

2 The Structure of the Complex Numbers

In Ma1a, we often ran into the following question: “Given some polynomial P (x), what
are its roots?” Depending on the polynomial, we had several techniques for finding these
roots (Rolle’s theorem, quadratic/cubic formulas, factorization;) however, we at times would
encounter polynomials that have no roots at all, like

x2 + 1.

Yet, despite the observation that this polynomial’s graph never crossed the x-axis, we
could use the quadratic formula to find that this polynomial had the “formal” roots

−0±
√
−4

2
= ±
√
−1.

The number
√
−1, unfortunately, isn’t a real number (because x2 ≥ 0 for any real x, as

we proved last quarter) – so we had that this polynomial has no roots over R. This was a
rather frustrating block to run into; often, we like to factor polynomials entirely into their
roots, and it would be quite nice if we could always do so, as opposed to having to worry
about irreducible functions like x2 + 1.

Motivated by this, we can create the complex numbers by just throwing
√
−1 into the

real numbers. Formally, we define the set of complex numbers, C, as the set of all numbers
{a+ bi : a, b ∈ R}, where i =

√
−1.

1For the purposes of this question, assume that for any pair of people, either they have both met each
other (they’re both acquainted with each other) or neither one has met the other (they are mutual strangers.)
I.e. there is no situation where one person has met the other but the other somehow didn’t notice.
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Graphically, we can visualize the complex numbers as a plane, where we identify one
axis with the real line R, the other axis with the imaginary-real line iR, and map the point
a+ bi to (a, b):

ℝ

iℝ

θ

z=a+bi

Two useful concepts when working in the complex plane are the ideas of norm and
conjugate:

Definition 2.1. If z = x+ iy is a complex number, then we define |z|, the norm of z, to
be the distance from z to the origin in our graphical representation; i.e. |z| =

√
x2 + y2.

As well, we define the conjugate of z = x + iy to be the complex number z = x − iy.
Notice that |z| =

√
x2 + y2 =

√
zz.

In the real line, recall that we had |x · y| = |x| · |y|; this still holds in the complex plane!
In particular, we have |w · z| = |w| · |z|, for any pair of complex numbers w, z. (If you don’t
believe this, prove it! – it’s not a difficult exercise to check.)

So: we have this set, C, that looks like the real numbers with i thrown in. Do we have
any way of extending any of the functions we know and like on R, like sin(x), cos(x), ex to
the complex plane?

At first glance, it doesn’t seem likely: i.e. what should we say sin(i) is? Is cos a
periodic function when we add multiples of 2πi to its input? Initially, these questions seem
unanswerable; so (as mathematicians often do when faced with difficult questions) let’s try
something easier instead!

In other words, let’s look at polynomials. These functions are much easier to extend
to C: i.e. if we have a polynomial on the real line

f(x) = 2x3 − 3x+ 1,

the natural way to extend this to the complex line is just to replace the x’s with z’s: i.e.

f(z) = 2z3 − 3z + 1.

This gives you a well-defined function on the complex numbers (i.e. you put a complex
number in and you get a complex number out,) such that if you restrict your inputs to
the real line x+ i · 0 in the complex numbers, you get the same outputs as the real-valued
polynomial.
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In other words, we know how to work with polynomials. Does this help us work with
more general functions? As we’ve seen over the last two weeks, the answer here is yes! More
specifically, the answer here is to use power series. Specifically, over the last week, we
showed that

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− . . . ,

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− . . . , and

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!
+ . . .

for all real values of x. Therefore, we can choose to define

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+
z9

9!
− . . . ,

cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+
z8

8!
− . . . , and

ez = 1 + z +
z2

2
+
z3

3!
+
z4

4!
+
z5

5!
+ . . . ,

for all z ∈ C. This extension has the same properties as the one we chose for polynomials:
it gives a nice, consistent definition of each of these functions over all of C, that agrees with
the definitions they already had on the real line R.

The only issue with these extensions is that we’re still not entirely quite sure what they
mean. I.e.: what is sin(i), apart from some strange infinite power series? Where does the
point ez lie on the complex plane?

To answer these questions, let’s look at ez first, as it’s arguably the easiest of the three
(its terms don’t do the strange alternating-thing, and behave well under most algebraic
manipulations.) In particular, write z = x+ iy: then we have

ez = ex+iy = ex · eiy,

where ex is just the real-valued function we already understand. So, it suffices to understand
eiy, which we study here:

eiy = 1 + iy +
(iy)2

2
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+

(iy)6

6!
+

(iy)7

7!
+

(iy)8

8!
+ . . .

If we use the fact that i2 = −1, we can see that powers of i follow the form

i,−1,−i, 1, i,−1,−i, 1, . . .

and therefore that

eiy = 1 + iy − y2

2
− iy

3

3!
+
y4

4!
+ i

y5

5!
− y6

6!
− iy

7

7!
+
y8

8!
+ . . .
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If we split this into its real and imaginary parts, we can see that

eiy =

(
1− y2

2
+
y4

4!
− y6

6!
+ . . .

)
+ i

(
y − y3

3!
+
y5

5!
. . .

)
.

But wait! We’ve seen those two series before: they’re just the series for sin(y) and cos(y)!
In other words, we’ve just shown that

eiy = cos(y) + i sin(y).

One famous special case of this formula is when y = π, in which case we have eiπ =
cos(π) + i sin(π) = −1, or

eiπ + 1 = 0.

Which is amazing. In one short equation, we’ve discovered a fundamental relation that
connects five of the most fundamental mathematical constants, in a way that – without this
language of power series and complex numbers – would be unfathomable to understand.
Without power series, the fact that a constant related to the area of a circle (π), the square
root of negative 1, the concept of exponential growth (e) and the multiplicative identity (1)
can be combined to get the additive identity (0) would just seem absurd; yet, with them,
we can see that this relation was inevitable from the very definitions we started from.

But that’s not all! This formula (Euler’s formula) isn’t just useful for discovering deep
fundamental relations between mathematical constants: it also gives you a way to visualize
the complex plane! In specific, recall the concept of polar coördinates, which assigned to
each nonzero point z in the plane a value r ∈ R+, denoting the distance from this point to
the origin, and an angle θ ∈ [0, 2π), denoting the angle made between the positive x-axis
and the line connecting z to the origin:

r·cos(θ)

r·sin(θ)r

z=(r,θ)

θ

With this definition made, notice that any point with polar coördinates (r, θ) can be written
in the plane as (r cos(θ), r sin(θ)). This tells us that any point with polar coördinates (r, θ)
in the complex plane, specifically, can be written as r(cos(θ) + i sin(θ)); i.e. as reiθ.

This gives us what we were originally looking for: a way to visually interpret ex+iy! In
specific, we’ve shown that ex+iy is just the point in the complex plane with polar coördinates
(ex, y).
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2.1 A Quick Interlude: Factorization and
∑

1
n2

As alluded to in our “motivation” for the complex numbers, working in C solves many of
our woes with respect to factoring out roots. In particular, we have the following theorem,
whose proof we omit but is not beyond your abilities to find:

Theorem 2.2. (The Fundamental Theorem of Algebra:) Every complex polynomial p(z)
with degree n has n (possibly repeated) roots in the complex plane. In other words, we can
factor every degree n polynomial into n complex roots: i.e. we can always find constants
such that

p(z) = C ·
n∏
k=1

(z − ri).

As it turns out, there is a far stronger analogue to this theorem, which says (basically)
that we can factor not just polynomials, but entire power series into their roots! This
theorem is incredibly difficult to prove (you could easily spend a pair of quarters on complex
analysis and not get to it,) so we state it without proof below:

Theorem 2.3. Weierstrass Factorization Theorem: every complex power series f(x) =∑
anz

n can be written in the form

eg(z)xn ·
∏

all roots rk of f

(
1− z

rk

)
,

for some natural number n and some other complex power series g(x).

Basically, this says that we can separate any complex power series into its roots (the
(1− z

ri
) - parts and the zk part), times some eg(z)-part that’s never 0.

One particular result you can derive from this theorem is the following factorization of
sin(z):

sin(z) = z ·
∞∏

n=−∞

(
1− z

πn

)
.

The proof of this theorem – or indeed just that sin(z) can be written in the form above,
if you tried to do this directly without the theorem! – are far beyond the scope of this
course. But, even without the proofs, this should hopefully feel at least like a plausible
result; after all, if we can factor out the roots for polynomials, then we ought to be able to
do so for “infinte polynomials” like power series.

(A quick aside: for those of you who haven’t seen it before, the infinite product of
some sequence an,

∏∞
n=1 an, is just defined by the limit

lim
N→∞

N∏
n=1

an.

This should look like definition we used for an infinte series; it’s the same idea, except with
multiplication in place of addition.)

Using this, we can finally prove something we claimed back in week 2 of our course:

Theorem 2.4.
∑ 1

n2 = π2

6 .
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Proof. So: recall our earlier-mentioned deus ex machina result that sin(z) could be “factored
into its roots” – i.e that

sin(z) = z ·
∞∏

n=−∞

(
1− z

πn

)
.

We can rewrite this expression as the product

sin(z) = z ·
∞∏
n=1

(
1− z

πn

)
·
∞∏
n=1

(
1 +

z

πn

)
,

and bring terms together to further simplify this into the equation

sin(z) = z ·
∞∏
n=1

(
1− z

πn

)
·
(

1 +
z

πn

)
= z ·

∞∏
n=1

(
1− z2

π2n2

)
;

Thus, from the above, we know that we can write

sin(z)

z
=
∞∏
n=1

(
1− z2

π2n2

)
.

Ok, so enough simplification. Why do we do this? Well: we also have the power series
expansion z − z3

3! + z5

5! −
z7

7! + z9

9! − . . . , which tells us that

sin(z)

z
=
z − z3

3! + z5

5! −
z7

7! + z9

9! − . . .
z

= 1− z2

3!
+
z4

5!
− z6

7!
+
z8

9!
− . . .

So these two quantities are the same! In particular, we know that they must share the same
power series; consequently, these two objects must share the same z2-coefficient. For the
power series expression, finding this coefficient is easy – it’s just − 1

3! .
For the product, it’s not much harder. Look at(

1− z2

π212

)
·
(

1− z2

π222

)
·
(

1− z2

π232

)
·
(

1− z2

π242

)
· . . . .

How can we get a term involving z2 out of such a product? Well; think way back, to the
days of FOIL. How do we figure out what a complicated product of polynomials, like

(a0 + a1z + . . . aqz
q) · (b0 + . . . brz

r) · (c0 + . . .+ csz
t)

is? Well: all we do is just pick a term in the first polynomial – say, some aiz
i – and multiply

it by some term in the second polynomial – say, bkz
k – and finally multiply it by some term
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in the third polynomial – say clz
l. If we do this exactly once for every single possible way of

choosing terms out of these three polynomials, and add them up, this gives us the product
of the polynomials! Essentially, this is just FOIL writ large.

In the infinte case it’s just the same process! In order to figure out what the terms of(
1− z

π212

)
·
(

1− z

π222

)
·
(

1− z

π232

)
·
(

1− z

π242

)
· . . .

are, we just need to look at the various terms we get by choosing one value from each
(1 − z2

π2n2 ) and multiplying them all together. In particular, if we’re looking at the z2

coefficient, the only terms that will have a z2 as their coefficient are those that choose
precisely one z2

π2n2 out of our giant product, and choose 1’s the rest of the time! So, in
short, we have that the z2 terms are simply all of the fractions − 1

π2n2 ; so the z2-coefficient
is just

∞∑
n=1

− 1

π2n2
.

Setting this equal to − 1
3! tells us that

− 1

3!
=

∞∑
n=1

− 1

π2n2

⇒ π2

6
=
∞∑
n=1

1

n2
.

3 Calculus on the Complex Numbers

In Ma1a, pretty much the first thing we started to do with the real numbers, after building
up their structure, was calculus: throughout the last quarter, we studied the concepts of
limits, derivatives, and integrals, and this quarter we’ve been studying sequences and series.
A natural thing to want to study here, then, is calculus on the complex numbers: i.e. what
is the notion of a limit for complex numbers? What is a derivative of a complex-valued
function?

We define these concepts here. Notice that in the following definitions, we’re pretty
much using the exact same definitions as in the real-valued case, just with complex values
where we used to have real numbers:

Definition 3.1. We say that a sequence {an}∞n=1 of complex numbers converges to some
value L if

lim
n→∞

|an − L| = 0.

To illustrate this definition’s use, we work a quick example:

Example 3.2. The limit

lim
n→∞

ein

fails to converge.
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Proof. Consider the distance between two consecutive terms, |ei(n+1) − ein|. This is equal
to

|ei(n+1) − ein| = |ein(ei − 1)|
= |ein| · |ei − 1|.

From before, we know that ein is just the unit-length vector leaving the origin that makes
an angle of n radians with the positive-real-axis. In specific, we can see that it is length 1,
which leaves us with

|ei(n+1) − ein| = |ei − 1|.

This is precisely the length of a chord corresponding to an angle of 1 radian in a radius 1
circle, which is (via formulas you can look up) 2 sin

(
1
2

)
. In specific, this is a fixed nonzero

constant: therefore, the terms of this sequence are not getting closer to each other as n
goes to infinity. Therefore, we can conclude that they do not have a limit, as in order for
a sequence to have a limit its terms must get arbitrarily close to each other as n goes to
infinity.

This definition of limits allows us to work with the idea of complex-valued series. Pretty
much the only tool that we’ll need to study complex-valued series is the idea that absolute
convergence ⇒ convergence, whose statement is identical to the theorem we stated for
real-valued series:

Definition 3.3. (Absolute convergence ⇒ convergence:) Take a sequence {an}∞n=1 of com-
plex numbers. Then, if the real-valued series

∞∑
n=1

|an|

converges, so must the series

∞∑
n=1

an.

Using this, we can talk about complex power series!

Definition 3.4. A complex power series around the point c is simply a complex valued
function f(z) of the form

∑∞
n=0 an(z − c)n. Usually, we will study complex power series

only in the case when c = 0, in which case our power series looks like
∑∞

n=0 anz
n.

Our definitions for complex convergence, series, and power series look fairly similar to
the ones we had for real series and power series; so, we might hope that some of our theorems
for power series carry through. Thankfully, many of them do, with special attention to the
following theorem:

Theorem 3.5. If f(z) =
∑∞

n=0 anz
n is a complex power series that converges for some

z0 ∈ C, then for any a ≤ |z0|, we have that
∑∞

n=0 anx
n converges uniformly on the circle of

radius a in C.
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This theorem has a lot of beautiful results! In particular, it tells us why we use the
word radius in the phrase “radius of convergence:” this is because in the complex plane, the
radius of convergence is an actual value r such that our power series converges for everything
smaller in magnitude than r and diverges for everything in magnitude greater than r! In
other words, power series on the complex plane either converge only at 0, on all of C, or
only inside some disk with some radius r (where the boundary points with magnitude r
may or may not converge.)

To illustrate this picture, consider the following example:

Example 3.6. Find the radius of convergence of the Taylor series for 1
1+x2

, as considered
as a complex-valued power series

Proof. Recall from our earlier lectures that

T

(
1

1 + x2

)
= 1− x2 + x4 − x6 + x8 . . . =

∞∑
n=0

(−1)nx2n.

Therefore, if we look at this series at some value r ∈ R+, we can use the idea that absolute
convergence ⇒ convergence along with the ratio test to see that because

lim
n→∞

|r|2n

r2(n−1)
= r2,

whenever r < 1 we have that this series converges. As well, at r = 1 our series is just

1− 1 + 1− 1 + 1− 1 . . . ,

which clearly does not converge (as its partial sums oscillate between 1 and 0.) Therefore,
by our theorem on radii of convergence, we know that the complex power series

∞∑
n=0

(−1)nz2n

must converge on all values of z with |z| < 1 (because for any |z| < 1, it converged on a
value of r > |z|,) and diverge on all values of z with z > 1 (because it diverged at some
value with norm 1.) In other words, its radius of convergence is 1.

To visually illustrate why this is a radius of convergence, we graph what we’ve just
proven:

blue: converges

white: diverges

gold: unsure
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This, hopefully, should demonstrate how we attack pretty much all of these problems:
to study the radius of convergence of this complex power series, all we had to do was look
at its values on the real line. In general, because of our theorem on radii of convergence,
this will always work! In other words, our mastery of real-valued power series will allow us
to deal with complex-valued power series without much more effort.

The last topic we turn to in these lectures is the notion of derivative:

Definition 3.7. We define the derivative of a complex function f : C→ C at a point z by

f ′(z) = lim
h→0

f(z + h)− f(z)

h
,

where h is a complex number in the limit above.

This, as you may have noticed, looks identical to the definition we had for the derivative
of a real function f(x):

lim
h→0

f(x+ h)− f(x)

h

The only difference between the two is that in the real derivative, h is restricted to real
values, where in the complex derivative h has far more choices! We illustrate this below:

real: 2 cases

h

h

complex: many cases

h

h

h

In the real case, we’re examining the limit limh→0, where h is a real number; so, realistically,
there are only two “paths” that we have to consider for studying this limit, limh→0− and
limh→0+ . In the complex case, however, we have to deal with the limit limz→0, where z is
a complex number; in this case, we have infinitely many paths that might crop up.

As you might expect from this additional complication, this might make having a com-
plex derivative a harder thing than having a real-valued derivative. The following, perhaps
surprising, example shows how this comes up in practice:

Example 3.8. Consider the following complex-valued function:

f(x+ iy) = x− iy,

i.e. f(z) = z, the conjugate function. This function is not differentiable anywhere.

Proof. Take any value z = x+ iy, and denote h = a+ ib. Then, if we look at the definition
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of the derivative, we have

f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
a,b→0

f(x+ a+ iy + ib)− f(x+ iy)

a+ ib

= lim
a,b→0

x+ a− iy − ib− (x− iy)

a+ ib

= lim
a,b→0

a− ib
a+ ib

.

If we look at this along the path a = 0, b→ 0, we have that this is the limit

= lim
b→0

0− ib
0 + ib

= −1;

conversely, if we look at this along the path b = 0, a→ 0 we have the limit

= lim
a→0

a− i · 0
a+ i · 0

= 1.

Because these values disagree, we know that there is no consistent limit as h → 0 for this
derivative to take on.

This is. . . really surprising. In the real numbers, it is really hard to construct a function
that’s continuous but not differentiable; here, we found one pretty much immediately. That
said, a few of the basic theorems on differentiation still go through:

• d
dz (f(z)) = 0, if f(z) is a constant.

• d
dz (z) = 1.

• d
dz (f(z) + g(z)) =

(
d
dzf(z)

)
+
(
d
dzg(z)

)
.

• d
dz (f(z) · g(z)) =

(
d
dzf(z)

)
g(z) +

(
d
dzg(z)

)
f(z): i.e. the product rule

• d
dz (f(g(z))) =

(
d
dzf(z)

) ∣∣∣
g(z)
·
(
d
dzg(z)

)
: i.e. the chain rule.

• If f(z) =
∑∞

n=0 anz
n is a complex power series with radius of convergence r, then for

any z ∈ C with |z| < r, we have(
d

dz
g(z)

)
(f(z)) =

∞∑
n=1

an · nzn−1.

In other words, power series still play well with derivatives whenever they’re uniformly
convergent, just like in the reals.

11



For example, we still have that d
dz (zn) = nzn−1, by just applying the product rule and

the property that d
dz (z) = 1. As well, we still have that d

dz (ez) = ez and d
dz (sin(z)) =

cos(z), ddz (cos(z)) = − sin(z) by using our observation that derivatives and power series
“play nicely” with each other.

Integration is a somewhat stranger concept, as (unlike the case in R) we suddenly have
an entire plane to integrate functions over, instead of just a line! As this course is not a
multivariable calculus course, we will omit discussing just what a complex integral might
be; see me, however, if you’re curious and want to read about them!
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