
Math 1d Instructor: Padraic Bartlett

Lecture 3: Series with Negative Terms; Sequences of Functions

Week 4 Caltech - Winter 2012

1 Random Questions

Question 1.1. (This is a research question I’ve been looking at for a week or two. If you
get somewhere, tell me!)

Let A be a set with 4n elements in it. A halving of A is a way to pick precisely half of
the elements in A. A handy way to visualize a halving is illustrated below:

Here, we’ve arranged the points of A in a circle: with this visualization, we can think of a
halving as a way to pick out “half” of the wedges around our circle, omitting the rest.

We say that two halvings are orthogonal if overlapping both of them yields a quartering,
i.e. a way to divide A into four equal parts, as depicted below:

=intersect

(4 parts)

If this is true, we define the sum of two orthogonal halvings H1, H2 as the halving H12

created as follows: let the chosen elements of H12 be precisely those that either both H1

and H2 have chosen, along with those that neither H1 nor H2 have chosen. An example
is illustrated below:

+ =

So: that’s the setup. The question is now the following: suppose you take the collection
of all halvings of a set A on 4n vertices, for n ≥ 2, and assign to each halving a color R
or B. Show that there are a pair of halvings H1, H2 such that H1, H2 and H1,2 all have the
same color.

Question 1.2. Consider the function

F (x) =

∞∑
n=1

cos(3n · π · x)

10n

Show that this function is continuous everywhere. Show that it’s differentiable nowhere.
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2 Series with Negative Terms

Last week, we studied series with positive terms, and came up with a collection of tests
(the ratio, integral, and comparison tests) that we could use to determine whether they
converged or not. However, we often will want to study series with negative terms in
them: how can we apply our old tests to such series? Also, do we have any new tools for

dealing with series with both positive and negative terms, like
∑∞

n=1
(−1)n+1

n ?
As it turns out, we do! Consider the following pair of results:

1. Alternating series test: If {an}∞n=1 is a sequence of numbers such that

• limn→∞ an = 0 monotonically, and

• the an’s alternate in sign, then

the series
∑∞

n=1 an converges.

When to use this test: when you have an alternating series.

2. Absolute convergence ⇒ convergence: Suppose that {an}∞n=1 is a sequence such
that

∞∑
n=1

|an|

converges. Then the sequence
∑∞

n=1 an also converges.

When to use this test: whenever you have a sequence that has positive and negative
terms, that is not alternating. (Pretty much every other test requires that your
sequence is positive, so you’ll often apply this test and then apply one of the other
tests to the series

∑∞
n=1 |an|.)

We illustrate the use of these two tests here:

Claim 1. (Alternating series test): The series

∞∑
n=1

(−1)n+1

n

converges.

Proof. The terms in this series are alternating in sign: as well, they’re bounded above and
below by ± 1

n , both of which converge to 0. Therefore, we can apply the alternating series
test to conclude that this series converges.

Claim 2. (Absolute convergence ⇒ convergence): The series

∞∑
n=1

cosn(nx)

n!

converges.
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Proof. We start by looking at the series composed of the absolute values of these terms:

∞∑
n=1

| cosn(nx)|
n!

Because | cos(x)| ≤ 1 for all x, we can use the comparison test to notice that this series will
converge if the series

∞∑
n=1

1

n!

converges.
We can study this series with the ratio test:

lim
n→∞

1
n!
1

(n−1)!
= lim

n→∞

1

n
= 0,

which is less than 1. Therefore this series converges, and therefore (by the comparison test
+ absolute convergence ⇒ convergence) our original series

∞∑
n=1

cosn(nx)

n!

converges.

2.1 Rearranging Sums

We make a quick detour here to some more philosopical questions. Think, for a moment
about what series are: just infinite sums of things! So: with finite sums, we know that
addition has several nice properties. One particularly nice property that addition has is
that it’s commutative: i.e. the order in which we add things up doesn’t matter! In other
words, we know that

1 + 2 + 3 = 3 + 2 + 1 = 6.

A natural question we could ask, then, is the following: does this hold true with series?
In other words, if we rearrange the terms in the series (say)

∞∑
n=1

(−1)n+1

n
,

will it still sum up to the same thing?
Well: let’s try! Specifically, consider the following way to rearrange our series:

∞∑
n=1

(1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
. . .

=?

(
1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+

(
1

5
− 1

10
− 1

12

)
+

(
1

7
− 1

14
− 1

16

)
. . .
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In the second rearrangement, we’ve ordered terms in the following groups:

. . .+

(
1

odd number
− 1

2 · that odd number
− 1

2 · that odd number + 2

)
+ . . .

Notice that every term from our original series shows up in exactly one of these groups.
Specifically, each odd number clearly shows up once: as well, for any even number, there
are two cases: either it has exactly one factor of 2, in which case it’s of the form (2·an odd
number) and shows up exactly once, or it’s a multiple of 4, in which case it shows up as a
(2·an odd number+2), and also shows up once. So this is in fact a proper rearrangement!
We haven’t forgotten any terms, nor have we repeated any terms.

But, if we group terms as indicated below in our rearrangement, we have

∞∑
n=1

(1)n+1

n
=?

(
1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+

(
1

5
− 1

10
− 1

12

)
+

(
1

7
− 1

14
− 1

16

)
. . .

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+

(
1

7
− 1

14

)
− 1

16
. . .

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+

1

14
− 1

16
. . .

=
1

2
·
(

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
. . .

)
=

1

2
·
∞∑
n=1

(1)n+1

n
.

So: if rearranging terms doesn’t change the sum of an infinte series, we’ve just shown
that

∞∑
n=1

(1)n+1

n
=

1

2
·
∞∑
n=1

(1)n+1

n
.

The only number that is equal to half of itself is 0: therefore, this series must sum to 0!

However: look at our series
∑∞

n=1
(−1)n+1

n again. In specific, if we just expand this sum
without rearranging anything, we can see that

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
. . .

=

(
1− 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+

(
1

7
− 1

8

)
+

(
1

9
− 1

10

)
+ . . .

=
1

1 · 2
+

1

3 · 4
+

1

5 · 6
+

1

7 · 8
+

1

9 · 10
+ . . .

≥ 1

2
.

So this sum definitely cannot converge to 0, as all of its partial sums are ≥ 1
2 ! This

answers our question earlier about rearranging series fairly definitively: we’ve just shown
that rearranging series can do unpredictable, terrible, and horrible things to the series
itself.

In fact, we have the following two theorems about what happens when series are rear-
ranged:
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Theorem 2.1. Suppose that
∑∞

n=1 an is an absolutely convergent series. Then rearranging
the an’s does not change what our series converges to.

Theorem 2.2. Suppose that
∑∞

n=1 an is a convergent series that is not absolutely conver-
gent. Then for any r ∈ R ∪ {±∞}, we can rearrange the an’s so that the resulting series
converges to r.

Cool!

3 Sequences of Functions

Thus far, all of our discussions about convergence have dealt with real numbers: over the
last three and a half weeks, we’ve developed a number of theorems and tests designed to let
us know when various sequences and series of real numbers converge, and to tell us what
they converge to. However, the basic concept of convergence is just one of “distance” –
essentially, the claim that a sequence converges to a value is just a way of saying that its
terms become very “close” to that value.

So: if the key idea of convergence is just this idea of “distance,” can we extend this
concept of convergence to other objects? In specific, can we extend the idea

First, note that by a sequence of functions we mean a collection {fn}∞n=1 of functions,
indexed by the natural numbers. In this situation, suppose that all of the functions fn are
maps from some set A to the real numbers, and suppose further that we’re given a function
f : A→ R. What could we possibly hope to mean by the equation

lim
n→∞

fn = f ?

One possible idea would be to simply say that limn→∞ fn = f holds if and only if the
sequences {fn(x)} converge to f(x), for every x ∈ A. In other words, we have the following
definition:

Definition 3.1. We say that a sequence {fn} of functions A → R converges pointwise
to some function f : A→ R if and only if limn→∞ fn(x) = f(x), for every x ∈ A.

So: if a sequence of real numbers all had a certain property – like all being positive, or
greater than three, or integers – then if they converged to some value, that value often had
to share that property. A natural question, then, is whether this holds true for sequences
of functions; in other words, if we have a sequence of differentiable/continuous functions,
must their pointwise limit be differentiable/continuous? If we have a sequence of functions
all with integral 1 over some region, does their pointwise limit also have to have integral 1?

We answer these questions with the following two examples:

Example 3.2. Let

fn(x) :=


1, x ≤ 0
n2x, 0 < x ≤ 1/n
−n2x+ 2n, 1/n < x ≤ 2/n
0, x ≥ 2/n

What is the pointwise limit of the fn’s?

Proof. We start with a graph of the fn’s:
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n

1/n 2/n

By construction, the integral of any of these fn’s is just the area of a triangle with base
2/n and height n – i.e. 1, for every fn.

So: to calculate what these fn(x)’s converge to, we break the x’s apart into two cases:

1. x ≤ 0. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

0 = 0.

2. x > 0. In this case, we again know that we can find a value of N such that 2
N < x;

thus, for every n > N , we have that fn(x) = 0, because x > 2
n . Thus, we have that

lim
n→∞

fn(x) = lim
n→∞

0 = 0.

Combining the results above tell us that the functions fn converge pointwise to the
function

f(x) := 0.

This means that, amongst other things, the integral is not preserved: while the integral
of each fn was 1, the integral of their limit f is just 0.

So: what happens when we look at continuity/differentiability?

Example 3.3. Let

fn(x) :=


1, x ≤ 0
cos(nπx), 0 < x < 1/n
−1, x ≥ 1/n

What is the pointwise limit of the fn’s?

Proof. We start by graphing the fn’s:

1/n

1

1
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Before beginning, we note that these functions indeed are all differentiable, as their
derivatives on each part of their piecewise definition are

f ′n(x) :=


0, x ≤ 0
−nπ · sin(nπx), 0 < x < 1/n
0, x ≥ 1/n

,

and these all agree at the “cross-over” points 0 and 1/n. So we’re starting with continuous
and differentiable functions: will we get a continuous/differentiable function in the limit?

To calculate what these fn(x)’s converge to, we break the x’s apart into two cases:

1. x ≤ 0. In this case, we have that

lim
n→∞

fn(x) = lim
n→∞

1 = 1.

2. x > 0. In this case, we know (from the first quarter) that we can always find a value
of N such that 1

N < x; thus, for every n > N , we have that fn(x) = −1, because
x > 1

n . Thus, we have that

lim
n→∞

fn(x) = lim
n→∞

−1 = −1.

Combining the results above tell us that the functions fn converge pointwise to the
function

f(x) :=

{
1, x ≤ 0
−1, x > 0

So: we started with a bunch of differentiable functions, and didn’t even get something
that’s continuous.

The moral of the above two examples seems to be that our notion of pointwise conver-
gence, as intuitive and easy-to-use as it is, fails miserably at conserving most of the basic
concepts we have for describing functions. Continuous functions fail to stay continuous,
integrals aren’t stable, differentiability has no hope; it’s all a big mess. Yet, if we look at
the graphs of the three “counterexamples” above, we might be able to come up with a fix
for this problem:
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In each of the two graphs above, there’s a region (highlighted in yellow) where the graph
seems to be almost moving “too fast” – i.e. while all of the fn’s remain continuous for every
n, as the n’s get large our functions begin to move very quickly in a very small area (as
in the yellow regions.) So, while the fn’s converge pointwise to their pointwise limits f ,
throughout this convergence there is always a small region – corresponding to the yellow
areas – where these functions were very far apart.

So: what if we used this as a new notion for convergence? I.e. what if we said that a
sequence of functions fn converge to a function f if and only if the fn’s become uniformly
close to the function f? In other words: what if we said that limn→∞ fn = f if and only if
the fn’s are eventually ε-close to f everywhere, for any epsilon and large enough n? Well,
we definitely wouldn’t have to worry about our two earlier examples, as the picture below
shows:

Here, we can see that the fn’s are never completely contained within a small neighborhood
(say, the one shaded in orange) of their pointwise limits f . So, while they do converge to
f pointwise, they would fail to converge “uniformly” under our proposed definition above!
Maybe there’s some merit to this idea. Let’s formally define this notion of a “uniform”
convergence, and see where it takes us:

Definition 3.4. We say that a sequence {fn} of functions A→ R converges uniformly
to some function f : A→ R if and only if for every ε > 0, there is a N such that for every
n > N ,

|f(x)− fn(x)| < ε,∀x ∈ A.

In other words, a sequence {fn} converges uniformly to some function f if and only if
the fn’s are all ε−close to f everywhere, for sufficiently large n.

It’s worth noting the following proposition, which says that uniform convergence is a
strictly stronger notion of convergence than pointwise convergence:

Proposition 3.5. If a sequence {fn}∞n=1 converges uniformly to a function f , then it must
converge pointwise to f as well.

Uniform convergence is, on its face, a “harder” definition to work with than pointwise
convergence. The payoff for definition lies in the following three theorems, which state that
uniform convergence preserves continuity, integrals, and (kinda) derivatives. We state them
here:
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Theorem 3.6. If limn→∞ fn = f uniformly, and all of the functions fn, f are integrable
on some interval [a, b], then

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.

Theorem 3.7. If limn→∞ fn = f uniformly, and all of the functions fn are continuous on
some interval (a, b), then so is f(x).

Theorem 3.8. If the limit limn→∞ fn = f uniformly, and the limit limn→∞ f
′
n converges

uniformly to some continuous function, then f is differentiable and limn→∞ f
′
n(x) = f ′(x).

To illustrate how to prove a sequence converges uniformly, consider the following exam-
ple:

Example 3.9. Let

fn(x) =

n∑
k=0

xk.

Then the sequence {fn(x)}∞n=1 converges uniformly on the interval
[
−1

2 ,
1
2

]
to the function

1
1−x .

Proof. First, notice the identity

n∑
k=0

xk =
1− xn+1

1− x
,

which you can prove by induction if you haven’t seen it before. Using this identity, we can
show that for any x ∈

[
−1

2 ,
1
2

]
, we have

lim
n→∞

fn(x) = lim
n→∞

1− xn+1

1− x
=

1

1− x
,

because for any |x| < 1, limn→∞ x
n = 0.

So we’ve shown that the pointwise limit of the fn(x)’s is 1
1−x . We now want to show

that this convergence is uniform: i.e. that for any distance ε > 0, there is a cutoff point
N past which the fn’s are all within this distance of their limit 1

1−x .

Look at
∣∣∣fn − 1

1−x

∣∣∣:∣∣∣∣fn − 1

1− x

∣∣∣∣ =

∣∣∣∣1− xn+1

1− x
− 1

1− x

∣∣∣∣ =
|x|n+1

|1− x|
,

which for x ∈
[
−1

2 ,
1
2

]
is greatest when x = ±1

2 : i.e. its maximum is

1
2n+1

1
2

=
1

2n
.

So: we can make this quantity as small as we want! In other words, for any ε > 0, we can
pick a sufficiently large cutoff point N past which 1

2n < ε: i.e. we can make the fn’s all
arbitrarily close to 1

1−x everywhere.

Therefore, this sequence converges uniformly to 1
1−x , as claimed.
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One immediate/awesome consequence of this is that taking integrals is now completely
trivial!

Corollary 3.10. If

f(x) =
1

1− x

then the antiderivative of f(x) is the function

f(x) = C +

∞∑
n=0

xn+1

n+ 1
.

Proof. We proved above that

1

1− x
=
∞∑
n=0

xn,

and that this convergence is uniform. Therefore, we know that integration commutes with
limits: i.e. that∫

1

1− x
dx =

∫ ( ∞∑
n=0

xk

)
dx =

∞∑
n=0

(∫
xkdx

)
= C +

∞∑
n=0

xn+1

n+ 1
.

More examples will come next week, when we start studying power series!
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