
Math 1d Instructor: Padraic Bartlett

Lecture 1: Sequences

Week 2 Caltech - Winter 2012

1 Random Questions

A note on this section: at the start of lectures, I like to post interesting questions I’ve came
across in my classes/research that are somewhat related to the material we’re covering.
These problems are strictly recreational! – I don’t expect people to solve them, but offer
them just to give you all something to think about. Let me know if you solve any of them,
or want hints/solutions!

Question 1. Consider the following list of numbers:

1,

11,

21,

1211,

111221,

312211, . . .

a.) There is a very simple rule that, given a entry on this list of numbers, will tell you
what the next number is. What do you think it is? Using it, what is the next element
of our list? (If you’re stuck, look at problem 6 on the HW, where this sequence [the
“look-and-say” sequence] is defined. )

b.) Show that the length of elements in the look-and-say sequence grows by about 1.3
characters per step: i.e. if ln is the length of the n-th entry in the look-and-say
sequence, show that

lim
n→∞

ln+1

ln
∼= 1.3.

c.) Show that in specific, limn→∞
ln+1

ln
= λ, Conway’s constant, which is the unique root of

the following degree-71 polynomial:

x71 −x69 −2x68 −x67 +2x66 +2x65 +x64 −x63 −x62−
x61 −x60 −x59 +2x58 +5x57 +3x56 −2x55 −10x54 −3x53−

2x52 +6x51 +6x50 +x49 +9x48 −3x47 −7x46 −8x45 −8x44+

10x43 +6x42 +8x41 −5x40 −12x39 +7x38 −7x37 +7x36 +x35−
3x34 +10x33 +x32 −6x31 −2x30 −10x29 −3x28 +2x27 +9x26−
3x25 +14x24 −8x23 −7x21 +9x20 +3x19 −4x18 −10x17 −7x16+

12x15 +7x14 +2x13 −12x12 −4x11 −2x10 +5x9 +x7 −7x6+

7x5 −4x4 +12x3 −6x2 +3x −6
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Question 2. Consider the following sequence {an}∞n=1, which we’ve written with some helpful
line breaks:

0,

− 1, 0, 1

− 4

2
,−3

2
,−2

2
, . . . ,

2

2
,
3

2
,
4

2
,

− 9

3
,−8

3
,−7

3
, . . . ,

7

3
,
8

3
,
9

3
,

− 16

4
,−15

4
,−14

4
, . . . ,

14

4
,
15

4
,
16

4
, . . .

...

For which values of r in R can you find a subsequence of {an}∞n=1 that converges to r?

2 Sequences and Series

This week’s lectures in Math 1d are going to focus on sequences and convergence. A lot
of the material here will feel like review; consequently, we’re going to focus pretty heavily
on examples and techniques. Before we can do that, however, we should review some of
our basic definitions: what is a sequence? What does it actually mean for a sequence to
converge? We review these definitions here:

2.1 Sequences: Definitions

Definition 2.1. A sequence of real numbers is a collection of real numbers {an}∞n=1

indexed by the natural numbers.

Definition 2.2. A sequence {an}∞n=1 is called bounded if there is some value B ∈ R such
that |an| < B, for every n ∈ N. Similarly, we say that a sequence is bounded above if
there is some value U such that an ≤ U,∀n, and say that a sequence is bounded below if
there is some value L such that an ≥ L,∀n.

Definition 2.3. A sequence {an}∞n=1 is said to be monotonically increasing if an ≤ an+1,
for every n ∈ N; conversely, a sequence is called monotonically decreasing if an ≥ an+1,
for every n ∈ N.

Definition 2.4. Take a sequence {an}∞n=1. A subsequence of {an}∞n=1 is a sequence that
we can create from the {an}∞n=1’s by deleting some elements (making sure to still leave
infinitely many elements left,) without changing the order of the remaining elements.

For example, if {an}∞n=1 is the sequence

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . . ,

the sequences 0, 0, 0, 0, 0 . . . and 1, 1, 1, 1, 1, . . . are both subsequences of {an}∞n=1, as is
0, 1, 0, 0, 0, 0, . . . and many others.
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Definition 2.5. A sequence {an}∞n=1 converges to some value λ if the an’s “go to λ” at
infinity. To put it more formally, limn→∞ an = λ iff for any distance ε, there is some cutoff
point N such that for any n greater than this cutoff point, an must be within ε of our limit
λ.

In symbols:

lim
n→∞

an = λ iff (∀ε)(∃N)(∀n > N) |an − λ| < ε.

Convergence is one of the most useful properties of sequences! If you know that a
sequence converges to some value λ, you know, in a sense, where the sequence is “going,”
and furthermore know where almost all of its values are going to be (specifically, close to
λ.)

Because convergence is so useful, we’ve developed a number of tools for determining
where a sequence is converging to:

2.2 Sequences: Convergence Tools

1. The definition of convergence: The simplest way to show that a sequence con-
verges is sometimes just to use the definition of convergence. In other words, you
want to show that for any distance ε, you can eventually force the an’s to be within
ε of our limit, for n sufficiently large.

How can we do this? One method I’m fond of is the following approach:

• First, examine the quantity |an − L|, and try to come up with a very simple
upper bound that depends on n and goes to zero. Example bounds we’d love to
run into: 1/n, 1/n2, 1/ log(log(n)).

• Using this simple upper bound, given ε > 0, determine a value of N such that
whenever n > N , our simple bound is less than ε. This is usually pretty easy:
because these simple bounds go to 0 as n gets large, there’s always some value
of N such that for any n > N , these simple bounds are as small as we want.

• Combine the two above results to show that for any ε, you can find a cutoff point
N such that for any n > N , |an − L| < ε.

2. Arithmetic and sequences: These tools let you combine previously-studied results
to get new ones. Specifically, we have the following results:

• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then limn→∞ an +
bn = (limn→∞ an) + (limn→∞ bn).

• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then limn→∞ anbn =
(limn→∞ an) · (limn→∞ bn).

• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6= 0 for all
n, then limn→∞

an
bn

= (limn→∞ an)/(limn→∞ bn).

3. Continuity and sequences: This tool lets us use our knowledge of continuous
functions to help evaluate series. Specifically, we have the following two claims

• Composing sequences and continuous functions: if limn→∞ an exists and f(x) is
a continuous function, then limn→∞ f(an) = f (limn→∞ an).
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• Switching from discrete limits to continuous limits: Suppose that the limit limx→∞ f(x)
exists and is equal to L, for some function f(x) and real number L. Then the
limit of the sequence limn→∞ f(n) exists and is also equal to L.

4. Monotone and bounded sequences: if the sequence {an}∞n=1 is bounded above and
nondecreasing, then it converges; similarly, if it is bounded above and nonincreasing,
it also converges. If a sequence is monotone, this is usually the easiest way to prove
that your sequence converges, as both monotone and bounded are “easy” properties
to work with. One interesting facet of this property is that it can tell you that a
sequence converges without necessarily telling you what it converges to! So, it’s often
of particular use in situations where you just want to show something converges, but
don’t actually know where it converges to.

5. Subsequences and convergence: if a sequence {an}∞n=1 converges to some value
L, all of its subsequences must also converge to L.

One particularly useful consequence of this theorem is the following: suppose a se-
quence {an}∞n=1 has two distinct subsequences {bn}∞n=1, {cn}∞n=1 that converge to dif-
ferent limits. Then the original sequence cannot converge! This is one of the few
tools that you can use to directly show that something diverges, and as such is pretty
useful.

6. Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist and are equal
to some value l, and the sequence {cn}∞n=1 is such that an ≤ cn ≤ bn, for all n, then the
limit limn→∞ cn exists and is also equal to l. This is particularly useful for sequences
with things like sin(horrible things) in them, as it allows you to “ignore” bounded bits
that aren’t changing where the sequence goes.

7. Cauchy sequences: We say that a sequence is Cauchy if and only if for every ε > 0
there is a natural number N such that for every m > n ≥ N , we have

|am − an| < ε.

You can think of this condition as saying that Cauchy sequences “settle down” in the
limit – i.e. that if you look at points far along enough on a Cauchy sequence, they all
get fairly close to each other.

The Cauchy theorem, in this situation, is the following: a sequence is Cauchy if and
only if it converges.

The Cauchy criterion doesn’t come up as often as the others in Math 1a (later in math-
ematics, however, it shows up pretty much everywhere!) Its main uses are for working
with series (we’ll have an example of this later, and define series later as well!), and
for sequences whose limits we don’t know: like the monotone-bounded-convergence
theorem, this result doesn’t need you to know where a sequence is converging to in
order to show that it converges.

2.3 Sequences: Applications of Convergence Tools

In this section, we work an example for each of these tools. We start by illustrating how to
prove a sequence converges using just the definition:
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Claim 3. (Definition of convergence example:)

lim
n→∞

√
n+ 1−

√
n = 0.

Proof. When we discussed the definition as a convergence tool, we talked about a “blueprint”
for how to go about proving convergence from the definition: (1) start with |an − L|, (2)
try to find a simple upper bound on this quantity depending on n, and (3) use this simple
bound to find for any ε a value of N such that whenever n > N , we have

|an − L| < (simple upper bound) < ε.

Let’s try this! Specifically, examine the quantity |
√
n+ 1−

√
n− 0|:

|
√
n+ 1−

√
n− 0| =

√
n+ 1−

√
n

=
(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

<
1√
n
.

All we did here was hit our |an−L| quantity with a ton of random algebra, and kept trying
things until we got something simple. The specifics aren’t as important as the idea here:
just start with the |an − L| bit, and try everything until it’s bounded by something simple
and small!

In our specific case, we’ve acquired the upper bound 1√
n

, which looks rather simple: so

let’s see if we can use it to find a value of N .
Take any ε < 0. If we want to make our simple bound 1√

n
< ε, this is equivalent to

making 1
ε <
√
n, i.e 1

ε2
< n. So, if we pick N > 1

ε2
, we know that whenever n > N , we have

n > 1
ε2

, and therefore that our simple bound is < ε. But this is exactly what we wanted!
In specific, for any ε > 0, we’ve found a N such that for any n > N , we have

|
√
n+ 1−

√
n− 0| < 1√

n
<

1√
N
< ε,

which is the definition of convergence. So we’ve proven that limn→∞
√
n+ 1−

√
n = 0.

Claim 4. (Arithmetic and Sequences example:) The sequence

a1 = 1,

an+1 =
√

1 + a2n

does not converge.
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Proof. We proceed by contradiction: in other words, suppose that this sequence does con-
verge to some value L, say. Then, examine the limit

lim
n→∞

a2n.

Because squaring things is a continuous operation, we know that

lim
n→∞

a2n = ( lim
n→∞

an)2 = L2.

However, we can also use the recursive definition of the an’s to see that

lim
n→∞

a2n = lim
n→∞

(√
1 + a2n−1

)2

= lim
n→∞

(1 + a2n−1)

However, we know that limn→∞ a
2
n−1 = limn→∞ a

2
n = L2, because the two sequences are the

same (just shifted over one place) and thus have the same behavior at infinity. Therefore,
we know that both limn→∞ 1 and limn→∞ a

2
n−1 both exist: as a result, we can apply our

result on arithmetic and sequences to see that

lim
n→∞

(1 + a2n−1) =
(

lim
n→∞

1
)

+
(

lim
n→∞

a2n−1

)
= 1 + L2.

So, we’ve just shown that L2 = 1 + L2: i.e. 0 = 1. This is clearly nonsense: so we’ve
arrived at a contradiction. Therefore, our original assumption (that our sequence {an}∞n=1

converged must be false – i.e. this sequence must diverge, as claimed.

Claim 5. (Another arithmetic and sequences example:) For any two positive real numbers
x > y > 0, show that

lim
n→∞

xn − yn

xn + yn
= 1.

Proof. Using the fact that 0 < y < x, write y = cx, for some positive real number c < 1.
Then, our limit is just

lim
n→∞

xn − (cx)n

xn + (cx)n
= lim

n→∞

xn − cnxn

xn + cnxn
= lim

n→∞

xn(1− cn)

xn(1 + cn)
= lim

n→∞

1− cn

1 + cn
.

Now, notice that because 0 < c < 1, limn→∞ 1 − cn = limn→∞ 1 + cn = 1. Because of
this, we can move our limit above into the fraction (because both the top and bottom limits
exist,) and get

lim
n→∞

1− cn

1 + cn
=

limn→∞ 1− cn

limn→∞ 1 + cn
=

1

1
= 1.

So our original limit is 1, as claimed.
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Claim 6. (Continuity and Sequences example:) Evaluate the limit

lim
n→∞

n ·
(
e

1
n − 1

)
Proof. Initially, it’s not even clear what this limit converges to: while the n-part converges
to infinity, the (e1/n−1) part goes to 0, and the behavior of their product is kinda confusing.
So, how should we proceed?

Well: one thing we might be tempted to do is pass to the continuous case! In other
words, consider instead the limit

lim
x→∞

x ·
(
e

1
x − 1

)
.

If this limit exists, we know that it will be equal to our discrete limit limn→∞ n ·
(
e

1
n − 1

)
,

by the tools we discussed earlier.
The advantage of doing this is now we can use tools like L’Hôpital’s theorem to evaluate

this limit, where before we had a discrete sequence (and couldn’t even talk about things
like taking derivatives!)

In specific, if we rewrite our limit as

lim
x→∞

e
1
x − 1

1/x
,

and substitute in y = 1/x, we have that our original limit is just

lim
y→0+

ey − 1

y
,

which we can just hit with L’Hôpital’s rule (as both top and bottom go to 0) to get

lim
y→0+

ey

1
= 1.

So our limit exists and is 1: therefore, our original discrete limit limn→∞ n ·
(
e

1
n − 1

)
also exists and is 1.

Claim 7. (Monotone convergence theorem example:) Let

an =

n∑
k=0

1

k!
.

Then the sequence {an}∞n=1 converges.

Proof. As suggested above, let’s try showing that this sequence is monotonically increasing
and bounded to prove it converges.

Monotonically increasing is not hard to show: because the difference between an+1 and
an is

an+1 − an =

n+1∑
k=0

1

k!
−

n∑
k=0

1

k!
=

1

(n+ 1)!
,
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which is positive, we know that an+1 > an for every n.
Bounded is not much harder. Take any term an, and expand it as the sum

an = 1 + 1 +
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+

1

2 · 3 · 4 · 5
+ . . .+

1

2 · 3 · . . . · n
.

How can we make this simpler, into something we can easily study and show is finite? Well:
one way is to simply take the denominators of all of these fractions and replace all of the
numbers greater than 2 with 2’s. In other words, notice that

an = 1 + 1 +
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+

1

2 · 3 · 4 · 5
+ . . .+

1

2 · 3 · . . . · n
≤ 1 + 1 +

1

2
+

1

2 · 2
+

1

2 · 2 · 2
+

1

2 · 2 · 2 · 2
+ . . .+

1

2 · 2 · . . . · 2
= 1 + 1 +

1

2
+

1

4
+

1

8
+ . . .+

1

2n−1
.

But we know the sum on the right! In particular, by remembering our geometric sum
identities from whenever they came up in high school (or proving them via induction, if you
didn’t see them before), we have

1

2
+

1

4
+

1

8
+ . . .+

1

2n−1
=

2n−1 − 1

2n−1
< 1.

So the entire sum is bounded above by 1 + 1 + 1 = 3, for any n! So it’s bounded above and
monotonically increasing, and therefore convergent, via our theorem.

Claim 8. (Subsequences example:) The sequence

{an}∞n=1 = 0, 1, 0, 1, 0, 1, 0, 1, . . .

diverges.

Proof. Both

0, 0, 0, 0, 0, 0, . . .

and

1, 1, 1, 1, 1, 1, . . .

are subsequences of {an}∞n=1. Therefore, because the first subsequence converges to 0 and
the second subsequences converges to 1, which are distinct values, our tool tells us that the
original sequence {an}∞n=1 cannot converge, and thus must diverge.

Claim 9. (Squeeze theorem example:)

lim
n→∞

sin

(
n2 · πne−12n · nn

. .
.
n
)

n
= 0.
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Proof. The idea of squeeze theorem examples is that they allow you to get rid of awful-
looking things whenever they aren’t materially changing where the sequence is actually
going. Specifically, in our example here, the sin(terrible things) part is awful to work with,
but really isn’t doing anything to our sequence: the relevant part is the denominator, which
is going to infinity (and therefore forcing our sequence to go to 0.

Rigorously: we have that

−1 ≤ sin(terrible things) ≤ 1,

no matter what terrible things we’ve put into the sin function. Dividing the left and right
by n, we have that

− 1

n
≤ sin(terrible things)

n
≤ 1

n
,

for every n. Then, because limn→∞− 1
n = limn→∞

1
n = 0, the squeeze theorem tells us that

lim
n→∞

sin

(
n2 · πne−12n · nn

. .
.
n
)

n
= 0

as well.

Claim 10. (Cauchy sequence example:) The sequence

an =

n∑
k=1

1

k2

converges.

Proof. To show that this sequence converges, we will use the Cauchy convergence tool,
which tells us that sequences converge if and only if they are Cauchy.

How do we prove that a sequence is Cauchy? As it turns out, we can use a similar
blueprint to the methods we used to show that a sequence converges:

• First, examine the quantity |am − an|, and try to come up with a very simple upper
bound that depends on m and n and goes to zero. Example bounds we’d love to run
into: 1

n ,
1
mn ,

1
n ,

1
m4 log(n)

. Things that won’t work: n
m (if n is really big compared to m,

we’re doomed!), m
n34 (same!), 4.

• Using this upper bound, given ε > 0, determine a value of N such that whenever
m > n > N , our simple bound is less than ε.

• Combine the two above results to show that for any ε, you can find a cutoff point N
such that for any m > n > N , |am − an| < ε.

Let’s apply the above blueprint, and study |am − an|. Remember that we’re assuming
that m > n here:

|am − an| =

∣∣∣∣∣
m∑
k=1

1

k2
−

n∑
k=1

1

k2

∣∣∣∣∣
=

m∑
k=n+1

1

k2
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The following step may seem quite weird: it’s motivated by partial fractions (because we
want a way to simplify our 1

k2
’s into simpler things), but it’s mostly just an algebraic trick.

The important thing is not to remember these tricks, but to just try tons of things until
eventually *one* of them sticks:

m∑
k=n+1

1

k2
<

m∑
k=n+1

1

k(k − 1)

=

m∑
k=n+1

(
1

k − 1
− 1

k

)

=

m∑
k=n+1

1

k − 1
−

m∑
k=n+1

1

k

=

m−1∑
k=n

1

k
−

m∑
k=n+1

1

k

=
1

n
− 1

m

<
1

n
.

This looks fairly simple!
Moving onto the second step: given ε > 0, we want to force this quantity 1

n < ε. How
can we do this? Well: if m > n > N , we have that 1

n <
1
N ; so it suffices to pick N such

that 1
N < ε.

Thus,we’ve shown that for any ε > 0 we can find a N such that for any m,n > N ,

|am − an| <
1

n
<

1

N
< ε.

But this just means that our sequence is Cauchy! So, because all Cauchy sequences converge,
we’ve proven that our sequence converges.
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