Math 1d	Instructor: Padraic Bartlett	
Week 6	Homework 5	

Instructions: Choose three questions out of the following six to complete. If you attempt more than three questions, your three highest scores will be recorded as your grade. Also, write me/Daiqi an email if you get stuck!

Resources allowed: Wikipedia, Mathematica, your notes, the online class notes, textbooks, and your classmates. If you've completed a problem via Mathematica or writing a program, attach your code to receive credit.

Standard Exercises:

1. Let

$$
f(x)=\ln \left(1+x^{2}\right) .
$$

(a) Find the Taylor series $T(f(x))$.
(b) Look at the power series given by $T(f(x))$. What is its radius of convergence?
2. Like $\int e^{-x^{2}} d x$, the indefinite integral

$$
\int \frac{\sin (x)}{x} d x
$$

cannot be expressed as some combination of the elementary functions \{sin, \cos , e^{x}, \ln, polynomials $\}$: i.e. there is no way to write the antiderivative of $\frac{\sin (x)}{x}$ by any combination of such elementary functions.
Despite this, use Taylor series to approximate the definite integral

$$
\int_{1}^{3} \frac{\sin (x)}{x} d x
$$

to within $\pm .01$ of its exact value. (Hint: mimic the example in lecture where we approximated the integral $\int_{1 / 2}^{1 / 2} e^{-x^{2}} d x$.)
3. (a) Using integration by parts and an inductive argument, show that

$$
\int_{0}^{\infty} e^{-a t} \cdot t^{n} d t=\frac{n!}{a^{n+1}}
$$

(b) Using the Taylor series for $\cos (t)$ and part (a), show that for $a>1$, we have

$$
\int_{0}^{\infty} e^{-a t} \cos (t) d t=\frac{a}{a^{2}+1} .
$$

(Hint: By using (a) and $\cos (t)$, you'll be able to turn this integral into a power series evaluated at $1 / a$. What power series is this?)

More Interesting Problems:

4. Recall, from the first problem set, the Fibonacci sequence:

$$
f_{0}=0, f_{1}=1, f_{n+1}=f_{n}+f_{n-1} .
$$

Look at the following power series you get by using the Fibonacci sequence, starting at f_{1}, as the coefficients of the x^{n} 's: i.e.

$$
\begin{aligned}
P(x) & =\sum_{n=0}^{\infty} f_{n+1} \cdot x^{n} \\
& =1+1 x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+13 x^{6}+21 x^{7} \ldots
\end{aligned}
$$

Show that this power series is the Taylor series of the function

$$
f(x)=\frac{1}{1-x-x^{2}} .
$$

(Hint: Notice that $f(x)$ is defined by the equation $f(x)-x f(x)-x^{2} f(x)=1$.)
5. Sometimes, the Taylor series of a function can be useful even where it fails to converge! Consider the following example:

$$
G(x)=\int_{0}^{\infty} e^{-x \cdot t} \cdot \frac{1}{1+t} d t
$$

If we were to attack this integral like problem 3, we would want to expand $\frac{1}{1+t}$ into its power series

$$
\frac{1}{1+t}=\sum_{n=0}^{\infty}(-1)^{n} \cdot t^{n}=1-t+t^{2}-t^{3} \ldots
$$

However, we know that this series is only convergent for $|t|<1$, and we're integrating on $(0, \infty)$.
(a) Despite this, do it anyways! I.e. show that the integral

$$
\int_{0}^{\infty} e^{-x \cdot t} \cdot\left(1-t+t^{2}-t^{3} \ldots\right) d t
$$

is the power series

$$
P(x)=\frac{1}{x}-\frac{1!}{x^{2}}+\frac{2!}{x^{3}}-\frac{3!}{x^{4}}+\frac{4!}{x^{5}} \ldots
$$

(Hint: you are allowed to use 3(a) without proof.)
(b) Show that this series diverges for any nonzero $x \in \mathbb{R}$.
(c) However, surprisingly enough, we can still use this power series to roughly calculate $G(x)$! I.e. it is known that $G(10)$ is about .0915633 .
Using Mathematica/matlab/a calculator, find the partial sums $P_{n}(10)$ of the first n terms in this power series evaluated at 10 , for n between 1 and 14 . Which value(s) of n are the closest to the actual value of this integral?
(This problem is a motivating example for the study of asymptotic series, which are a beautiful/beautifully complicated extension of the idea of Taylor series to "approximating things around infinity," rather than 0 . Let me know if you want more information!)
6. Let $i=\sqrt{-1}$. Suppos that $P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a power series with all $a_{n} \in \mathbb{R}$, such that

$$
P(x)=P(i x), \forall x \in \mathbb{R} .
$$

Show that $a_{n}=0$ whenever n is not a multiple of 4 .

