Math 1d
Homework 4

Week 5
Caltech - Winter 2012

Instructions: Choose three questions out of the following six to complete. If you attempt more than three questions, your three highest scores will be recorded as your grade. Also, write me/Daiqi an email if you get stuck!

Resources allowed: Wikipedia, Mathematica, your notes, the online class notes, textbooks, and your classmates. If you've completed a problem via Mathematica or writing a program, attach your code to receive credit.

Also: I put on a 7th problem. If you want, instead of doing this set, you can simply solve problem 7! Please email Daiqi and I your code/a compiled program if you do this.

Standard Exercises:

1. For each of the following power series, find the sets on which they converge:
(a) $\quad \sum_{n=1}^{\infty} x^{n} \cdot n^{n}$.
(b) $\quad \sum_{n=2}^{\infty} \frac{x^{n}}{n \cdot \ln (n)}$.
(c) $\quad \sum_{n=2}^{\infty} \frac{x^{n}}{(\ln (n))^{n}}$.
2. We mentioned the following orthogonality relations in class on Wednesday when we were talking about Fourier series:

$$
\begin{gathered}
\int_{-\pi}^{\pi} \sin ^{2}(n x) d x=\pi, \forall n \in \mathbb{N} . \\
\int_{-\pi}^{\pi} \cos ^{2}(n x) d x=\pi, \forall n \in \mathbb{N} . \\
\int_{-\pi}^{\pi} \sin (n x) \sin (m x) d x=0, \forall n \neq m \in \mathbb{N} . \\
\int_{-\pi}^{\pi} \cos (n x) \cos (m x) d x=0, \forall n \neq m \in \mathbb{N} . \\
\int_{-\pi}^{\pi} \sin (n x) \cos (m x) d x=0, \forall n, m \in \mathbb{N} .
\end{gathered}
$$

Prove any two of these relations. (Calculating all of these integrals involves pretty much the same set of tricks, which is why we're not asking you to show *all* of them.)
3. (a) Find the Fourier series of the square wave $s(x)$:

(b) Using (Mathematica/Maple/Matlab/Wolfram Alpha/your favorite program), graph the sum of the first hundred terms of the Fourier series from $-\pi$ to π, and attach your graph. Does it look like a square wave? What does it look like is occuring near the "jump discontinuities" at $-\pi, 0$, and π ? (This doesn't have to be rigorous: just describe visually what you see. If you do want a rigorous discussion of what's going on here, look up the Gibbs phenomenon on Wikipedia.)

More Interesting Problems:

4. Using Mathematica's Play function and the harmonic analysis at http://hyperphysics.phyastr.gsu.edu/hbase/music/flutew.html, create a Fourier series that sounds like a flute playing $F 4$ when played in Mathematica. (If you are unsure what this means, ask me !)
5. Suppose that $P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a power series such that $p(x)=0, \forall x$. Show that $a_{n}=0$, for all n.
(Hint: First, show that $\left.\frac{d^{n}}{d x^{n}}(p(x))\right|_{0}=n!\cdot a_{n}$. Then, show that all of $p(x)$'s derivatives at 0 are 0 .)
6. (a) Suppose that $P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is an even ${ }^{1}$ function. Show that a_{n} is 0 whenever n is odd.
(b) Suppose that $P(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is an odd ${ }^{2}$ function. Show that a_{n} is 0 whenever n is even.
(Hint: Use problem (5). You are welcome to use problem (5) even if you haven't proven it.)

Far More Interesting Problems:

7. Create a synthesizer. Specifically, create a program that when ran does the following:

- First, asks you for your choice of instrument (provide at least two choices of instrument, like sine wave, sawtooth wave, square wave, clarinet-ish wave.)
- Then, it takes in a number 1 through 12, interprets such a number as one of the 12 musical notes $A, B b, B, \ldots G \sharp$, and plays over speakers a Fourier series corresponding to this frequency and the chosen instrument.

If you are unsure as to what counts as a "program," write me and I can explain! Also, if you do this, send both Daiqi and I a copy of your code, so we can play around with it.

[^0]
[^0]: ${ }^{1}$ I.e. $P(x)=P(-x)$.
 ${ }^{2}$ I.e. $P(x)=-P(-x)$.

