Math 1d	Instructor: Padraic Bartlett	
	Homework 1	
Week 2	Caltech - Winter 2012	

Instructions: Choose three questions out of the following six to complete. If you attempt more than three questions, your three highest scores will be recorded as your grade. Also, write me/Daiqi me an email if you get stuck!

Resources allowed: Wikipedia, Mathematica, your notes, the online class notes, textbooks, and your classmates. If you've completed a problem via Mathematica or writing a program, attach your code to receive credit.

Standard Exercises:

1. Show that the claimed limits of the following sequences are true:
(a)

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{1 / n}=1
$$

(b)

$$
\lim _{n \rightarrow \infty}\left(x^{n}+y^{n}\right)^{1 / n}=y
$$

where x, y are a pair of positive real numbers such that $x<y$. (Hint: squeeze!)
2. (a) Create a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ that doesn't contain any convergent subsequences. Justify your answer.
(b) Characterize all of the subsequences of the sequence

$$
1,0,1,0,1,0,1,0 \ldots
$$

that converge. (Again, justify your answer.)
3. (a) Show that if x is a real number such that $0<x<2$, then $0<x<\sqrt{2 x}<2$.
(b) Use (a) to show that the sequence

$$
\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \sqrt{2 \sqrt{2 \sqrt{2 \sqrt{2}}}}, \ldots
$$

is monotone and bounded, and therefore converges.
(c) What does it converge to?

More Interesting Problems:

4. The Fibonacci sequence $\left\{f_{n}\right\}_{n=0}^{\infty}$ is defined as follows:

$$
f_{0}=0, f_{1}=1, f_{n+2}=f_{n}+f_{n+1} .
$$

(a) Write the first 10 terms of the Fibonacci sequence.
(b) Using induction, prove that

$$
f_{n}=\frac{\varphi^{n}-(-1 / \varphi)^{n}}{\sqrt{5}}
$$

where $\varphi=\frac{1+\sqrt{5}}{2}$ denotes the golden ratio. (Hint: notice that $\varphi^{2}=\varphi+1$, and similarly that $(-1 / \varphi)^{2}=(-1 / \varphi)+1$, and use this in your induction step.)
(c) Using part (c), prove that

$$
\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\varphi .
$$

5. For any positive integer k, the k-hailstone sequence $\left\{h_{n}\right\}_{n=0}^{\infty}$ is defined as follows:

- Define $h_{0}=k$.
- If h_{n} is odd, define $h_{n+1}=3 h_{n}+1$.
- If h_{n} is even, define $h_{n+1}=\frac{h_{n}}{2}$.

For example, the following sequence is the 13 -hailstone sequence:

$$
13,40,20,10,5,16,8,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1, \ldots
$$

The Collatz conjecture, an open problem in mathematics, is the claim that no matter what number you start with, this sequence will eventually reach 1 .
(a) Write a computer program to verify that the Collatz conjecture is true for all positive natural numbers less than 1000.
(b) In our example sequence where we started at 13 , we got to 1 after 9 steps, i.e. at the 9 th entry of our sequence. Using your program, determine which number less than 1000 takes the most steps to get to 1 . How many steps does it take?
6. The following is the first five entries in the look-and-say sequence:

$$
\begin{aligned}
& 1, \\
& 11, \\
& 21, \\
& 1211, \\
& 111221, \ldots
\end{aligned}
$$

To generate the next entry of the "look-and-say" sequence from the most recent entry, simply read the last entry aloud, counting the number of digits in groups of that digit. For example, starting from 111221, we would read

- 111 is read off as "three ones," i.e. 31.
- 22 is read off as "two twos," i.e. 22 .
- 1 is read off as "one one," i.e. 11 .

So the next entry in our sequence is 312211 .
(a) Write the next three entries of the look-and-say sequence.
(b) Prove that no element of the look-and-say sequence will ever contain a 4.

