
MATH 1D, WEEK 6 – COMPLEX POWER SERIES AND THE
RECIPROCALS OF SQUARES

INSTRUCTOR: PADRAIC BARTLETT

Abstract. These are the lecture notes from week 6 of Ma1d, the Caltech

mathematics course on sequences and series.

1. HW 3 information

• Homework average: 85%.
• Issues: about 1/5 of the class completely blanked on the definition of uni-

form convergence, which put a dent in the overall average. Beyond that,
however, that, everything looked fairly solid! See me if you’re confused on
any of the questions, or the concept of uniform convergence in general.

2. Complex Numbers: A Brief Review

Last quarter, the following question often came up: “Given some polynomial
P (x), what are its roots?” Depending on the polynomial, we had several techniques
for finding these roots (Rolle’s theorem, quadratic/cubic formulas, factorization;)
however, we at times would encounter polynomials that possessed no roots at all,
like

x2 + 1

Yet, despite the observation that this polynomial’s graph never crossed the x-
axis, we could use the quadratic formula to find that this polynomial had the
“formal” roots

−0±
√
−4

2
= ±
√
−1.

The number
√
−1, unfortunately, isn’t a real number (prove this!) – so we had

that this polynomial has no roots over R. This was a rather frustrating block to run
into; often, we like to factor polynomials entirely into their roots, and it would be
quite nice if we could always do so, as opposed to having to worry about irreducible
functions like x2 + 1.

Motivated by this, we created the complex numbers by – essentially – just
throwing

√
−1 into the real numbers. Formally, we defined the set of complex

numbers, C, as the set of all numbers {a+ bi : a, b ∈ R}, where i =
√
−1.

From this relatively simple definition came a massive host of properties, theo-
rems, and definitions, which we review here briefly:
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• We can graph complex numbers in the plane by mapping the value a + bi
to the point (a, b) in the plane, as done below:

ℝ

iℝ

 
θ

a

b

r

z=a+bi

• This process of graphing complex numbers on the plane suggests that we
might be able to associate other coördinate systems to the complex num-
bers; namely, polar coördinates! Specifically, we associated the pair (r, θ)
to the point z = a+ bi as depicted above, and wrote

z = reiθ.

The “why” of the above expression is not terribly clear right now: why
should we say that the point z with polar coördinates (r, θ) *is* reiθ? Why
would we apply the exponential function to i times the angle? On its face,
there seems to be absolutely no good reason for doing this; yet, as it turns
out, this expression is at the heart of one of the most elegant and beautiful
equations in mathematics, and is – truly – the precise expression we would
hope to be true. (Our goal for the first part of these lectures, incidentally,
will be to prove this aforementioned equation: eiθ = cos(θ)+i sin(θ), Euler’s
formula.)
• The derivative of a complex function: formally, we define the derivative of

a complex function f : C→ C at a point a by

f ′(a) = lim
z→0

f(z + a)− f(a)
z

.

This, as you may have noticed, looks identical to the definition we had for
the derivative of a real function! Yet, it is (unfortunately) a much more
complicated beast, as the pictures below show:
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Real:

Complex:

In the real case, we’re examining the limit limh→0, where h is a real number;
so, realistically, there are only two “paths” that we have to consider for
studying this limit, limh→0− and limh→0+ . In the complex case, however,
we have to deal with the limit limz→0, where z is a complex number; in
this case, we have an infinitude of possible paths that we have to consider,
as the above diagrams show.

The study of complex differentiation and its deep connections to math-
ematics could take up its own course; for now, however, the sole point that
you should take away from the above picture is that it is (in some well-
defined way) far harder for a function to be complex-differentiable than
it is to be real-differentiable.
• That said, a few of the basic theorems on differentiation still go through:

– f ′ = 0, if f is a constant.
– f ′ = 1, if f(z) = z.
– (f + g)′ = f ′ + g′.
– (fg)′ = f ′g + g′f – i.e. the product rule.
– (f ◦ g)′ = (f ′ ◦ g) · g′ – i.e. the chain rule.

For example, we still have that zn = nzn−1, by just applying the product
rule and the property that (z)′ = 1.
• So: we can also define things like sequences and series for complex numbers!

In particular, the following definitions hold: for a sequence of complex
numbers {an}∞n=1,

– We say that limn→∞ an = l if limn→∞ |an − l| = 0.
– We say that

∑∞
n=1 an = l if limN→∞

∑N
n=1 an = l.

– A complex power series around the point c is simply a complex valued
function f(z) of the form

∑∞
n=0 an(z − c)n.

• Our definitions for complex convergence, series, and power series look fairly
similar to the ones we had for real series and power series; so, we might
hope that some of our theorems carry through. Thankfully, many of them
do, with special attention to the following theorem:

Theorem 2.1. If f(z) =
∑∞
n=0 anz

n is a complex power series that con-
verges for some z0 ∈ C, then for any a ≤ |z0|, we have that

–
∑∞
n=0 anx

n converges uniformly on the circle of radius a in C,
– the series

∑∞
n=1 an · nxn−1 converges uniformly there as well, and

– f ′(x) =
∑∞
n=1 an · nxn−1 on this circle as well.
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The upshot of this theorem is that we are allowed to integrate and derive
complex power series term-wise, just as we could with real power series! I.e.
if f(z) =

∑
anz

n is a complex power series convergent over some region,
then

– f ′(z) =
∑
nanz

n−1, and
–
∫
f(z)dx =

∑ anz
n+1

n+1 , up to a constant C.
• Finally: as alluded to in our “motivation” for the complex numbers, work-

ing in C solves many of our woes with respect to factoring out roots. In
particular, we have the following theorem:

Theorem 2.2. The Fundamental Theorem of Algebra: every complex poly-
nomial p(z) with degree n has n (possibly repeated) roots in the complex
plane.

As it turns out, there is a far stronger analogue to this theorem, which
says (basically) that we can factor not just polynomials, but entire power
series into their roots! We state this without proof below:

Theorem 2.3. Weierstrass Factorization Theorem: every complex power
series f(x) =

∑
anz

n can be written in the form

eg(z)xk ·
∏

all roots ri of f

(
1− z

ri

)
,

for some k and complex power series g(x).

Basically, this says that we can separate any complex power series into
its roots, times some eg(z)-part that’s never 0. In particular, we have that

sin(z) = z ·
∞∏

n=−∞

(
1− z

πn

)
,

by factoring it into its roots.
The proof of this theorem – or indeed just that sin(z) can be written in

the form above! – are far beyond the scope of this course. But it should
hopefully be somewhat believable to you all that this is plausible; after all,
if we can factor out the roots for polynomials, then we ought to be able to
do so for “infinte polynomials” like power series.

(A quick aside: for those of you who haven’t seen it before, the infinite
product of some sequence an,

∏∞
n=1 an, is just defined by the limit

lim
N→∞

N∏
n=1

an.

This should hopefully look identical to the definition we used for an infinte
series; it’s basically the same idea, except with multiplication in place of
addition.)

3. Examples of Functions on C

All of that said: the only functions we’ve defined for complex numbers are poly-
nomials, thus far. It would be nice to perhaps actually *have* some function to
work with; say, the trigonometric functions, or ez, or log!
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Well; the issue here is that extending, say, sin(x) to the whole complex plane is
kind of a weird thing to do. Where should we send sin(i) to, for example? On the
face of things, it’s not remotely clear.

However, we *do* know how to extend polynomials to the complex plane: we
just send xn to zn, and get what arguably is the only natural interpretation of what
xn could be in the complex numbers. So: motivated by this idea, we actually can
choose to define sin(z), cos(z), and ez by their power series!

In particular: because

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− . . . ,

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− . . . , and

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!
+ . . .

for all real x, we choose to define

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+
z9

9!
− . . . ,

cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+
z8

8!
− . . . , and

ez = 1 + z +
z2

2
+
z3

3!
+
z4

4!
+
z5

5!
+ . . . ,

for all z ∈ C.
In particular, we can see by examining eiz that

eiz = 1 + iz +
(iz)2

2
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+ . . .

= 1 + iz − z2

2
− iz

3

3!
+
z4

4!
+ i

z5

5!
. . .

=
(

1− z2

2
+
z4

4!
− z6

6!
+ . . .

)
+ i

(
z − z3

3!
+
z5

5!
. . .

)
= cos(z) + i sin(z);

in other words, that eiz = cos(z) + i sin(z). This equation is known as Euler’s
formula, and is considered one of the most beautiful theorems in the natural sciences
– plugging in z = π, in particular, tells us that eiπ − 1 = 0, an equation linking
pretty much every single interesting mathematical constant in one succinct equality.

A quick application of Euler’s equation is the following: first, notice that any
point with polar coördinates (r, θ) can be written in the plane as (r cos(θ), r sin(θ)).
This tells us that any point with polar coördinates (r, θ) in the complex plane,
specifically, can be written as r(cos(θ) + i sin(θ)); i.e. as reiθ. Thus, as it turns
out, our seemingly arbitrary decision to write points in the form reiθ is in fact the
*only* choice we have left to us, if we’re going to define things like sin, cos, or e in
the complex plane at all!

We can also use the above ideas to define a kind of idea of log(z) via its power
series log(1− z) =

∑
n=1

zn

n as well; however, another method of extension is also
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fairly natural, and easy to set up. In the real setting, we defined log and e to be
inverses of each other; so it would seem natural to try to do the same thing here.
So, given a number reiθ, we write log(reiθ) as log(r) + iθ. This definition has the
advantage of making sense on all of C except for the origin (as opposed to our
power series, which only converges for |z| < 1); however, it bears noting that this
defintion has some interesting quirks, like mapping the entire complex plane to the
strip {a + bi : b ∈ (−π, π]} and not being continuous. For a further discussion,
check out the Wikipedia entry, or see me for more sources.

4. Proving
∑

1
n2 = π2

6

Theorem 4.1.
∑

1
n2 = π2

6 .

Proof. So: recall our earlier-mentioned deus ex machina result that sin(z) could be
“factored into its roots” – i.e that

sin(z) = z ·
∞∏

n=−∞

(
1− z

πn

)
.

We can rewrite this expression as the product

sin(z) = z ·
∞∏
n=1

(
1− z

πn

)
·
∞∏
n=1

(
1 +

z

πn

)
,

and bring terms together to further simplify this into the equation

sin(z) = z ·
∞∏
n=1

(
1− z

πn

)
·
(

1 +
z

πn

)
= z ·

∞∏
n=1

(
1− z2

π2n2

)
;

Thus, from the above, we know that we can write

sin(z)
z

=
∞∏
n=1

(
1− z2

π2n2

)
.

Ok, so enough simplification. Why do we do this? Well: we also have the power
series expansion z − z3

3! + z5

5! −
z7

7! + z9

9! − . . . , which tells us that

sin(z)
z

=
z − z3

3! + z5

5! −
z7

7! + z9

9! − . . .
z

= 1− z2

3!
+
z4

5!
− z6

7!
+
z8

9!
− . . .

So these two quantities are the same! In particular, we know that they must share
the same power series (as shown by you all, as a class, on the fourth HW set;)
consequently, these two objects must share the same z2-coefficient. For the power
series expression, finding this coefficient is easy – it’s just − 1

3! .

http://en.wikipedia.org/wiki/Complex_logarithm
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For the product, it’s not much harder. Consider, in fact the infinite product(
1− z2

π212

)
·
(

1− z2

π222

)
·
(

1− z2

π232

)
·
(

1− z2

π242

)
· . . . .

How can we get a term involving z2 out of such a product? Well; think way back,
to the days of FOIL. In particular, how do we figure out what a complicated finite
product of polynomials like

(a0 + a1z + . . . aqz
q) · (b0 + . . . brz

r) · (c0 + . . .+ csz
t)

is? We just pick a term in the first polynomial – say, some aizi – and multiply
it by some term in the second polynomial – say, bkzk – and finally multiply it by
some term in the third polynomial – say clzl. If we do this exactly once for every
single possible way of choosing terms out of these three polynomials, and add them
up, this gives us the product of the polynomials! Essentially, this is just FOIL writ
large.

So, in the infinte case it’s just the same – in order to figure out what the terms
of (

1− z

π212

)
·
(

1− z

π222

)
·
(

1− z

π232

)
·
(

1− z

π242

)
· . . .

are, we just need to look at the various terms we get by choosing one value from
each (1 − z2

π2n2 ) and multiplying them all together. In particular, if we’re looking
at the z2 coefficient, the only terms that will have a z2 as their coefficient are those
that choose precisely one z2

π2n2 out of our giant product, and choose 1’s the rest of
the time! So, in short, we have that the z2 terms are simply all of the fractions
− 1
π2n2 ; so the z2-coefficient is just

∞∑
n=1

− 1
π2n2

.

So: setting this equal to − 1
3! then tells us at last that

− 1
3!

=
∞∑
n=1

− 1
π2n2

⇒ π2

6
=
∞∑
n=1

1
n2
,

thus completing our proof. �
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