MATH 1D, HW #4 - QUESTIONS

INSTRUCTOR: PADRAIC BARTLETT

Instructions: Choose three questions out of the four below to complete! Also, justify everything you claim. Many of these are difficult questions! Write me if you have any questions.

Question 0.1. Find the Taylor series of the function $\frac{1}{x-a}$, and use it to find the Taylor series of the function $\log(x - a)$.

Question 0.2. Suppose that the power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges on the interval (-1, 1); furthermore, suppose that f(x) = 0 on all of (-1, 1). Show that $a_n = 0$ for every $n \in \mathbb{N}$.

Question 0.3. Suppose that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is an even function. Show that

 $a_n = 0$ whenever *n* is odd. Similarly, if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is an odd function, show that $a_n = 0$ whenever n is even.

Question 0.4. So: on Tuesday, the following curious result was stated: if we let $\{n_k\}$ be the sequence consisting of all natural numbers that do not have a 9 anywhere in their digits, then

$$\sum_{k=1}^{\infty} \frac{1}{n_k} < 80,$$

and thus converges. Prove this.

(Hint: how many n-digit numbers don't have a 9 in them? Given this, come up with a bound on the size of any n-digit number, and use these two pieces of information to bound the above series.)

Date: Due Date: Thursday, Feb. 11, at 4 p.m.