MATH 1D, HW \#3 - QUESTIONS

INSTRUCTOR: PADRAIC BARTLETT

Instructions: Choose three questions out of the four below to complete! Also, justify everything you claim. Some of these are difficult questions! Write me if you have any questions.

Question 0.1. If $\sum_{n=1}^{\infty} a_{n}$ is an absolutely convergent series, prove that

$$
\left|\sum_{n=1}^{\infty} a_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right|
$$

Question 0.2. Find the pointwise limit f of the sequence of functions

$$
f_{n}:=\left\{\begin{array}{lr}
e^{-n}, & x<-1 \\
e^{-n x^{2}}, & -1 \leq x \leq 1 \\
e^{-n}, & x>1
\end{array}\right.
$$

Do the f_{n} converge uniformly to this f ?

Question 0.3. Find the pointwise limit f of the sequence of functions

$$
f_{n}:=\left\{\begin{array}{lr}
0, & x<0 \\
x^{n}-x^{2 n}, & 0 \leq x \leq 1 \\
0, & x>1
\end{array}\right.
$$

Do the f_{n} converge uniformly to this f ? (Hint: where does the function $x^{n}-x^{2 n}$ adopt its maximum? What value does it take there?)

Question 0.4. Show that any rational number can be written as a finite sum of distinct numbers of the form $1 / n$.

[^0]For an idea on how to do question 4, consider the following algorithm for breaking up $\frac{29}{24}$ into fractions of the form $1 / n$: because

$$
\begin{aligned}
& \frac{29}{24}-\frac{1}{2}=\frac{17}{24} \\
& \frac{17}{24}-\frac{1}{3}=\frac{9}{24} \\
& \frac{9}{24}-\frac{1}{4}=\frac{3}{24} \\
& \frac{3}{24}<\frac{1}{5} \\
& \frac{3}{24}<\frac{1}{6} \\
& \frac{3}{24}<\frac{1}{7} \\
& \frac{3}{24}-\frac{1}{8}=0
\end{aligned}
$$

we have that $\frac{29}{24}$ can be written as $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{8}$.
Explicitly, notice that the numerators in our fractions above are always decreasing! So, one proof of this theorem could be completed as follows:

- Take any rational number $\frac{p}{q}$ such that $\frac{1}{n+1}<\frac{p}{q}<\frac{1}{n}$, for some n. Show that the numerator of $\frac{p}{q}-\frac{1}{n+1}$ is strictly smaller than the numerator of $\frac{p}{q}$.
- Conclude that, because the numerators are decreasing, that a generalized form of the process above will always end in finitely many steps. This then tells us that $\frac{p}{q}$ can be written as the sum of finitely many distinct fractions $\frac{1}{k}$.
- Use the fact that the sum $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges to show that any rational number - not just those between $\frac{1}{n+1}$ and $\frac{1}{n}$ for some $n-$ can be written as the sum of finitely many such fractions $\frac{1}{k}$.

[^0]: Date: Due Date: Thursday, Feb. 4, at 4 p.m.

