MATH 1D, HW \#1 - QUESTIONS

INSTRUCTOR: PADRAIC BARTLETT

Instructions: Choose three questions out of the four below to complete! Also, justify everything you claim. These are difficult questions! Write me if you have any questions.

Question 0.1. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive numbers, chosen so that the sums $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{b_{n}}$ both diverge. Does the sum

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}+b_{n}}
$$

also have to diverge?
Question 0.2. Does the sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}
$$

converge?
Question 0.3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive numbers, with the property that $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} b_{n}^{2}$ both converge. Does the sum

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

also have to converge?
Question 0.4. Suppose that $\left\{a_{n}\right\}$ is a sequence such that

- $\lim _{n \rightarrow \infty} a_{n}=0$, and
- the partial sums of the a_{n} 's are bounded by ± 1 - in other words,

$$
-1 \leq \sum_{k=1}^{n} a_{k} \leq 1
$$

for all n.
Does the sum

$$
\sum_{n=1}^{\infty} a_{n}
$$

have to converge?

[^0]
[^0]: Date: Due Date: Thursday, Jan. 21, at 4 p.m.

